Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x< 3y< 0\Rightarrow x,y< 0\)
chia cả 2 vế cho \(y^2\)ta được: \(9.\left(\frac{x}{y}\right)^2-\frac{20.x}{y}+4=0\)
Giải pt bậc 2 ẩn x/y => \(\orbr{\begin{cases}\frac{x}{y}=2\\\frac{x}{y}=\frac{2}{9}\end{cases}}\)
Ta có: \(A=\frac{3x+2y}{3x-2y}=\frac{\frac{3.x}{y}+2}{\frac{3x}{y}-2}\)
Thay x/y vào tính được kết quả ....
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\)
Tương tự: \(y^2+z^2\ge2yz\); \(x^2+z^2\ge2xz\)
Cộng từng vế của các BDDT trên:
\(2\left(xz+yz+xy\right)\le2\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\)
\(\Leftrightarrow3xy+3yz+3xz\le x^2+y^2+z^2+2xy+2yz+2xz\)
\(\Leftrightarrow3xy+3yz+3xz\le\left(x+y+z\right)^2\)
\(\Leftrightarrow3xy+3yz+3xz\le3^2=9\)
\(\Leftrightarrow xy+yz+xz\le3\)
Vậy \(D_{max}=3\Leftrightarrow x=y=z\)
Áp dụng BĐT Cauchy - Schwarz:
\(\left(x^2+y^2+z^2\right)\left(1+1+1\right)\)
\(=\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3^2=9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Vậy \(C_{min}=3\Leftrightarrow x=y=z=1\)
\(=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)= \(\left|2-5x\right|+\left|5x\right|\ge2+5x-5x=2\)
min A=2 \(\Leftrightarrow\hept{\begin{cases}2-5x\ge0\\5x\ge0\end{cases}\Leftrightarrow0\le x\le\frac{2}{5}}\)
Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2
\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :
\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)
\(\Rightarrow a+b-2\le\sqrt{8}-2\)
\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)
Do x ; y không âm , \(x^2+y^2=1\)
\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)
\(x,y\ge0\Rightarrow xy\ge0\)
Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)
\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)
\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)
\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)
\(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
\(P=\frac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}=1+\frac{\left(x-2y\right)^2}{x^2+2xy+5y^2}=\frac{17}{4}-\frac{1}{3}.\frac{\left(3x+7y\right)^2}{x^2+2xy+5y^2}\)
\(\Rightarrow\hept{\begin{cases}min_P=1\\max_P=\frac{17}{4}\end{cases}}\)
B= \(\frac{3y^2}{-25x^2+20xy-5y^2}=\frac{3y^2}{-y^2-\left(25x^2-20xy+4y^2\right)}=\frac{1}{-\frac{y^2}{3y^2}-\frac{\left(5x-2y\right)^2}{3y^2}}\)
=\(\frac{1}{-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}}\)
Có \(\frac{1}{3}+\frac{\left(5x-2y\right)^2}{3y^2}\ge\frac{1}{3}\) vs mọi x,y và y\(\ne0\)
<=>\(-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}\le-\frac{1}{3}\)
<=> \(\frac{1}{-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}}\ge-3\) <=> B \(\ge3\)
Dấu "=" xảy ra <=> 5x-2y=0
<=> 5x=2y < => \(x=\frac{2y}{5}\)
Vậy minB=3 <=> \(x=\frac{2y}{5}\)