\(B=\frac{3y^2}{-25x^2+20xy-5y^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

B= \(\frac{3y^2}{-25x^2+20xy-5y^2}=\frac{3y^2}{-y^2-\left(25x^2-20xy+4y^2\right)}=\frac{1}{-\frac{y^2}{3y^2}-\frac{\left(5x-2y\right)^2}{3y^2}}\)

=\(\frac{1}{-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}}\)

\(\frac{1}{3}+\frac{\left(5x-2y\right)^2}{3y^2}\ge\frac{1}{3}\) vs mọi x,y và y\(\ne0\)

<=>\(-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}\le-\frac{1}{3}\)

<=> \(\frac{1}{-\frac{1}{3}-\frac{\left(5x-2y\right)^2}{3y^2}}\ge-3\) <=> B \(\ge3\)

Dấu "=" xảy ra <=> 5x-2y=0

<=> 5x=2y < => \(x=\frac{2y}{5}\)

Vậy minB=3 <=> \(x=\frac{2y}{5}\)

16 tháng 2 2017

Ta có: \(2x< 3y< 0\Rightarrow x,y< 0\)

chia cả 2 vế cho \(y^2\)ta được: \(9.\left(\frac{x}{y}\right)^2-\frac{20.x}{y}+4=0\)

Giải pt bậc 2 ẩn x/y => \(\orbr{\begin{cases}\frac{x}{y}=2\\\frac{x}{y}=\frac{2}{9}\end{cases}}\)

Ta có: \(A=\frac{3x+2y}{3x-2y}=\frac{\frac{3.x}{y}+2}{\frac{3x}{y}-2}\)

Thay x/y vào tính được kết quả ....

2 tháng 11 2019

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\)

Tương tự: \(y^2+z^2\ge2yz\)\(x^2+z^2\ge2xz\)

Cộng từng vế của các BDDT trên:

\(2\left(xz+yz+xy\right)\le2\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Leftrightarrow3xy+3yz+3xz\le x^2+y^2+z^2+2xy+2yz+2xz\)

\(\Leftrightarrow3xy+3yz+3xz\le\left(x+y+z\right)^2\)

\(\Leftrightarrow3xy+3yz+3xz\le3^2=9\)

\(\Leftrightarrow xy+yz+xz\le3\)

Vậy \(D_{max}=3\Leftrightarrow x=y=z\)

2 tháng 11 2019

Áp dụng BĐT Cauchy - Schwarz:

\(\left(x^2+y^2+z^2\right)\left(1+1+1\right)\)

\(=\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3^2=9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Vậy \(C_{min}=3\Leftrightarrow x=y=z=1\)

17 tháng 7 2017

\(=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)\(\left|2-5x\right|+\left|5x\right|\ge2+5x-5x=2\)

min A=2 \(\Leftrightarrow\hept{\begin{cases}2-5x\ge0\\5x\ge0\end{cases}\Leftrightarrow0\le x\le\frac{2}{5}}\)

26 tháng 8 2018

Chuẩn đấy

24 tháng 11 2017

Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2 

8 tháng 4 2019

\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :

\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)

\(\Rightarrow a+b-2\le\sqrt{8}-2\)

\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)

8 tháng 4 2019

Do x ; y không âm , \(x^2+y^2=1\)

\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)

\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)

\(x,y\ge0\Rightarrow xy\ge0\)

Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)

\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)

\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)

\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)

\(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)

22 tháng 2 2019

\(P=\frac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}=1+\frac{\left(x-2y\right)^2}{x^2+2xy+5y^2}=\frac{17}{4}-\frac{1}{3}.\frac{\left(3x+7y\right)^2}{x^2+2xy+5y^2}\)

\(\Rightarrow\hept{\begin{cases}min_P=1\\max_P=\frac{17}{4}\end{cases}}\)

28 tháng 8 2021

 làm sao để ra max được v