K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Bmin=5 xay ra dau= khi va chi khi x=5

4 tháng 8 2018

\(B=\sqrt{x^2-10x+34}+\sqrt{x^2-10x+29}\)

\(=\sqrt{\left(x-5\right)^2+9}+\sqrt{\left(x-5\right)^2+4}\)\(\ge\)\(\sqrt{9}+\sqrt{4}=5\)

Vậy Min \(B=5\)khi  \(x=5\)

8 tháng 9 2019

a) \(\sqrt{x^2-10+25}\)=lx-5l=2

=>x=7 hoặc x=3

b) bình phường lên ta đc x^2-2x=25

từ đây bạn giải bình thường là đc chúc hk tốt

25 tháng 3 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)

mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)

từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1

b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)

=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')

mặt khác VP=5-2(x+1)2\(\le\)5(2')

từ (1') và (2')=> pt vô nghiệm

21 tháng 9 2019

vì sao lại có : căn(3(x+1)^2+4) +căn(5(x+1)^2+16) >=6 vậy ạ?

 

27 tháng 8 2023

ĐK: \(x>0\)

PT trở thành:

\(x+2=3\sqrt{x}\\ \Leftrightarrow x-3\sqrt{x}+2=0\\ \Leftrightarrow x-2\sqrt{x}-\sqrt{x}+2=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm `x=4` hoặc `x=1`

27 tháng 8 2023

\(\dfrac{x+2}{\sqrt{x}}=3\) (ĐKXĐ: x > 0)

\(\Leftrightarrow x+2=3\sqrt{x}\)

\(\Leftrightarrow x-3\sqrt{x} +2=0\)

\(\Leftrightarrow x-\sqrt{x}-2\sqrt{x}+2=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-1=0\end{matrix}\right.\)            \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\) (tm)

#Ayumu

29 tháng 8 2021

\(a,ĐK:x\in R\)

\(b,ĐK:\dfrac{-7}{8-10x}\ge0\Leftrightarrow8-10x< 0\left(-7< 0\right)\Leftrightarrow x>\dfrac{4}{5}\)

\(c,ĐK:\dfrac{24-6x}{-7}\ge0\Leftrightarrow24-6x\le0\left(-7< 0\right)\Leftrightarrow x\ge4\)

 

8 tháng 8 2023

Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)

a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)

\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)

\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{a-4}\)

b) Thay x=9 vào P ta có:

\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)

c) \(P< 0\) khi:

\(\dfrac{4\sqrt{x}+4}{a-4}< 0\) 

Mà: \(4\sqrt{x}+4>0\)

\(\Rightarrow a-4< 0\)

\(\Rightarrow a< 4\) 

kết hợp với Đk ta có:

\(0\le x< 4\)

8 tháng 8 2023

8 tháng 8 2023

cái cuối là 4 căn a-4/4-a ý ạ

 

31 tháng 5 2016

a)Ta có :  \(\sqrt{x}=x\left(DK:x\ge0\right)\)

\(\Leftrightarrow x=x^2\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Rightarrow x=0\)(nhận ) hoặc \(x=1\)(Nhận)

Vậy tập nghiệm của phương trình là : \(S=\left\{0;1\right\}\)

b) \(\sqrt{x^2+x+1}=x+2\left(DK:x\ge-2\right)\)

\(\Leftrightarrow x^2+x+1=\left(x+2\right)^2\)\(\Leftrightarrow x^2+x+1=x^2+4x+4\Leftrightarrow3x=-3\Leftrightarrow x=-1\)( Nhận)

Vậy tập nghiệm của phương trình là : \(S=\left\{-1\right\}\)

c) \(\sqrt{x^2-10x+25}=x-3\left(DK:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-3\Leftrightarrow\left|x-5\right|=x-3\)(1)

Đến đây ta xét hai trường hợp : 

1. Với  \(3\le x< 5\)phương trình (1) tương đương với : 

\(5-x=x-3\Leftrightarrow2x=8\Leftrightarrow x=4\)(Nhận)

2.  Với \(x\ge5\)phương trình (1) tương đương với : 

\(x-5=x-3\Rightarrow-5=-3\)( vô lí )

Vậy tập nghiệm của phương trình là : \(S=\left\{4\right\}\)

c) \(\sqrt{x-2}+\sqrt{2-x}=0\)

Ta có điều kiện xác định của phương trình là : \(\hept{\begin{cases}x-2\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le2\end{cases}\Rightarrow}x=2}\)

Thử lại với x = 2 ta thấy thoả mãn nghiệm của phương trình.

Vậy tập nghiệm của phương trình là : \(S=\left\{2\right\}\)