\(A=\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Ta có :

\(\left|x-2010\right|\ge0\)

và \(\left(y+2011\right)^{2010}\ge0\)

Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2010\right|=0\\\left(y+2011\right)^{2010}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)

Vậy GTNN của A xảy ra khi 

\(\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)

.....

12 tháng 1 2020

a) \(x^3-6x^2-9x+14=0\)

\(\Leftrightarrow x^3-8x^2+2x^2+7x-16x+14=0\)

\(\Leftrightarrow\left(x^3-8x^2+7x\right)+\left(2x^2-16x+14\right)=0\)

\(\Leftrightarrow x\left(x^2-8x+7\right)+2\left(x^2-8x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-7x-x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-7\right)-\left(x-7\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow x\in\left\{-2;1;7\right\}\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

a)

$x^3-6x^2-9x+14=0$

$\Leftrightarrow x^3-x^2-5x^2+5x-14x+14=0$

$\Leftrightarrow x^2(x-1)-5x(x-1)-14(x-1)=0$

$\Leftrightarrow (x-1)(x^2-5x-14)=0$

$\Leftrightarrow (x-1)(x^2-7x+2x-14)=0$

$\Leftrightarrow (x-1)[x(x-7)+2(x-7)]=0$

$\Leftrightarrow (x-1)(x+2)(x-7)=0$

$\Rightarrow x=1; x=-2$ hoặc $x=7$

b)

Bạn tham khảo tại đây:

Câu hỏi của Lương Đức Hưng - Toán lớp 8 | Học trực tuyến

1 tháng 11 2019

thì làm sao???Hỏi xong rồi tự trả lời thì có ích gì

1 tháng 11 2019

(✿◠‿◠)(๛ČℌUƔÊŇ♥Ť❍Ą́Ňツ)

Ê nhóc đừng có nghĩ lung tung 

ai bít thì giúp mình với nhé

\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)

\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)

\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)

\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)

\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)

\(\Leftrightarrow2015-x=0\)

\(\Leftrightarrow x=2015\)

KL : PT có nghiệm \(S=\left\{2015\right\}\)

1 tháng 2 2018

ytytytytytyt

25 tháng 4 2018

Bài 3: mk làm theo cách này: từ A = 8k(k2+503)

Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)

\(=k\left(k^2-1+6\right)+6.83k\)

\(=k\left(k^2-1\right)+6k+6.83k\)

\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)

\(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6

Vậy A \(⋮\) 8.6=48

25 tháng 4 2018

í, ngược lại Akai Haruma nhận xét bài mk nhầm mới phải. bạn xem lại thử.Cái này là dạng m\(⋮\)a, n\(⋮\)b \(\Rightarrow mn⋮ab\)

8 tháng 12 2019

\(5x^2+5y^2+8xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)

\(\Rightarrow x=-1;y=1\)

Khi đó:

\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)

\(=1\)