Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(B=x^2+6y^2+14z^2-8yz+6xz-4xy\)
\(=(x^2+4y^2+9z^2-4xy+6xz-12yz)+2y^2+5z^2+4yz\)
\(=(x-2y+3z)^2+2(y^2+2yz+z^2)+3z^2\)
\(=(x-2y+3z)^2+2(y+z)^2+3z^2\)
\(\geq 0+2.0+3.0=0\)
Vậy GTNN của $B$ là $0$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2y+3z=0\\ y+z=0\\ z=0\end{matrix}\right.\Leftrightarrow x=y=z=0\)
a) \(M=10x^2+6y+4y^2+4xy+2\)
\(=\left(10x^2+4xy+\dfrac{2}{5}y^2\right)+\left(\dfrac{18}{5}y^2+6y+\dfrac{5}{2}\right)-\dfrac{1}{2}\)
\(=10\left(x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)+\dfrac{18}{5}\left(y^2+\dfrac{5}{3}y+\dfrac{25}{36}\right)-\dfrac{1}{2}\)
\(=10\left(x+\dfrac{1}{5}y\right)^2+\dfrac{18}{5}\left(y+\dfrac{5}{6}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{5}y=0\\y+\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
b) \(H=-x^2+2xy-4y^2+2x+10y-8\)
\(=-x^2+2x\left(y+1\right)-\left(y^2+2y+1\right)-\left(3y^2-12y+7\right)\)
\(=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3\left(y^2-4y+4\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
c) \(K=2x^2+2xy-2x+2xy+y^2\)
bn xem lại cái đề nhé, sao lại có 2 lần 2xy
Lời giải:
a) \(A=x^2+2y^2-2xy+2x-10y\)
\(\Leftrightarrow A=(x-y+1)^2+(y-4)^2-17\)
Ta thấy \((x-y+1)^2; (y-4)^2\geq 0\Rightarrow A\geq -17\)
Vậy \(A_{\min}=-17\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y+1=0\\ y-4=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=4\end{matrix}\right.\)
b)
\(B=x^2+6y^2+14z^2-8yz+6xz-4xy\)
\(\Leftrightarrow B=(x-2y+3z)^2+2y^2+5z^2+4yz\)
\(\Leftrightarrow B=(x-2y+3z)^2+2(y+z)^2+z^2\)
Ta thấy \((x-2y+3z)^2; (y+z)^2; z^2\geq 0\forall x,y,z\in\mathbb{R}\)
\(\Rightarrow B\geq 0\Leftrightarrow B_{\min}=0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-2y+3z=0\\ y+z=0\\ z=0\end{matrix}\right.\Leftrightarrow x=y=z=0\)