Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
(x-1)(x+2)(x+3)(x+6)
=[(x-1)(x+6)][(x+2)(x+3)]
=(x^2+5x-6)(x^2+5x+6)
=(x^2+5x)^2-36>=-36
=>min=-36<=>x=0 hoặc x=-5
\(VìA=(x-1).(x+2).(x+3).(x+6)\)\(\Rightarrow\)\(A=x.(-1+2+3+6)\)\(\Rightarrow\)\(A=x.10\)
Vì A nhỏ nhất \(\Rightarrow\)A=0 mà A=x.10\(\Rightarrow\)0=x.10\(\Rightarrow\)x=0\(:\)10\(\Rightarrow\)x=0
\(Vậy\) \(A\) \(nhỏ\) \(nhất\) \(khi\) x=0
A=(x-1)(x+2)(x+3)(x+6)+12
=(x-1)(x+6)(x+2)(x+3)+12
=(x2+6x-x-6)(x2+3x+2x+6)+12
=(x2+5x)2-6.6+12
=(x2+5x)2-36+12
=(x2+5x)2-24
\(\Rightarrow\) (x2+5x)2\(\ge\)0 voi moi x
\(\Rightarrow\) (x2+5x)2\(\ge\) -24
Vay GTNN la -24
Dấu "=" xảy ra khi : x2+5x=0
x(x+5)=0
=>x=0 va -5
Nhớ k nha
C=(x-1)(x+6)*(x+2)(x+3)
=(x^2+5x-6)(x^2+5x+6)
=(x^2+5x)^2-36>=-36
Dấu = xảy ra khi x^2+5x=0
=>x=0 hoặc x=-5
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(C=\left(x^2+6x-x-6\right)\left(x^2+2x+3x+6\right)\)
\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x\right)^2-6^2\)
\(C=\left(x^2+5x\right)^2-36\)
Mà: \(\left(x^2+5x\right)^2\ge0\) nên \(C=\left(x^2+5x\right)-36\ge-36\)
Dấu "=" xảy ra:
\(\left(x^2+5x\right)-36=-36\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy: \(C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
a) A = (x-1)(x+2)(x+3)(x+6)
A= [(x-1)(x+6)][(x+2)(x+3)]
A=(x^2 + 5x - 6)(x^2 + 5x + 6) ( cái này mik làm tắt)
A = (x^2+5x)^2 - 6^2
A= (x^2+5x)^2 - 36
...
a, GTNN của A là 0 vì nếu x>0 thì GTNN của x là 1 mà trong A có (x-1) có thể bằng (1-1) = 0 mà 0 nhân với bất kì số nào cũng bằng 0