K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 10 2018

Lời giải:

a)

\(C=2x^2+x-15=2(x^2+\frac{x}{2}+\frac{1}{4^2})-\frac{121}{8}\)

\(=2(x+\frac{1}{4})^2-\frac{121}{8}\)

\((x+\frac{1}{4})^2\geq 0, \forall x\Rightarrow C\geq 2.0-\frac{121}{8}=-\frac{121}{8}\)

Vậy \(C_{\min}=\frac{-121}{8}\Leftrightarrow x=-\frac{1}{4}\)

b) Ta có:

\(D=3x^2+10x+20=3(x^2+\frac{10}{3}x+\frac{5^2}{3^2})+\frac{35}{3}\)

\(=3(x+\frac{5}{3})^2+\frac{35}{3}\)

\((x+\frac{5}{3})^2\geq 0, \forall x\in\mathbb{R}\) \(\Rightarrow D\geq 3. 0+\frac{35}{3}=\frac{35}{3}\)

Vậy \(D_{\min}=\frac{35}{3}\Leftrightarrow x=-\frac{5}{3}\)

a, A= x^2-10x+5

\(=x^2-2.5x+25-20\\ =\left(x-5\right)^2-20\ge20\)

Dấu = xảy ra khi x-5=0 <=> x=5

b.

b, B= 9^2-30x+4

\(=\left(3x\right)^2-2.3x.5+25-21\\ =\left(3x-5\right)^2-21\ge-21\)

Dấu = xảu ra khi \(x=\dfrac{5}{3}\)

c.C= 3x^+12x-1

\(< =>3C=9x^2+36x-3\\ =\left(3x+6\right)^2-39\ge-39\)

\(=>A\ge-13\)

Dấu = xảy ra khi x=-2

d.Tương tụ câu c (nhân 2 lên)

Đúng thì tích ' Đúng' mk với

12 tháng 9 2017

a, A=x2-10x+5

=(x-5)2-20

Do (x-5)2>hoặc=0 vs mọi x=>(x-5)2-20>hoặc=-20 vs mọi x

Dấu'=' xảy ra khi :(x-5)2=0=>x-5=0=>x=5

Vậy Amax=-20 khi x=5

b,TƯƠNG TỰ

Bmax=21 khi x=\(\dfrac{5}{3}\)

c,TƯƠNG TỰ

Cmax=13 khi x=-2

d,Tớ ko bt lmbucminh

12 tháng 9 2017

Max là GTLN . Nhưng đề bài kêu tìm GTNN thì dùng Min nhé

30 tháng 10 2019

a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Max của 3x - x2 = 9/4 <=> x = 3/2

b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=>  x - 3 = 0 <=> x = 3

Vậy Min của x2 - 6x + 18 = 9 <=> x = 3

30 tháng 10 2019

c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x

Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2

Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2

d) Ta có : x2 + y2 - 2x + 6y + 2019

= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009

= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y=  -3

23 tháng 6 2019

a) Ta có:A = 6x2 - 6x + 1 = 6(x2 - x + 1/4) - 1/2 = 6(x - 1/2)2 - 1/2

Ta luôn có : (x - 1/2)2 \(\ge\)\(\forall\)x  --> 6(x  - 1/2)2 \(\ge\) 0 \(\)x

=> 6(x - 1/2)2 - 1/2 \(\ge\)-1/2 \(\forall\)x

hay A \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra khi : (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2

Vậy Amin = -1/2 tại x = 1/2

23 tháng 6 2019

\(a,A=6x^2-6x+1\)

\(=6\left(x^2-x+\frac{1}{6}\right)\)

\(=6\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{6}\right]\)

\(=6\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{12}\right]\)

\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(A_{min}=-\frac{1}{12}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

20 tháng 7 2017

ta có:

A=(x+5) -32

Min A= -32

25 tháng 12 2016

Các bạn ơi giải giúp mình với, mình đang cần gấp

7 tháng 8 2017

D= 2( \(x^2\)+5x-\(\dfrac{1}{2}\))

D= 2( \(x^2\)+ 2. \(\dfrac{5}{2}\)x + \(\dfrac{25}{4}\)-\(\dfrac{27}{4}\))

D= 2( x+\(\dfrac{5}{2}\))\(^2\)+ \(\dfrac{27}{8}\) lớn hơn hoặc bằng \(\dfrac{27}{8}\)

vậy min P = \(\dfrac{27}{8}\) <=> x = -\(\dfrac{5}{2}\)

7 tháng 8 2017

e)\(E=5x-x^2=-x^2+5x=-x^2+2\cdot x\cdot\dfrac{5}{2}-\dfrac{25}{4}+\dfrac{25}{4}=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

(Vì: \(\left(x-\dfrac{5}{2}\right)^2\ge0\Rightarrow-\left(x-\dfrac{5}{2}\right)^2\le0\))

Vậy \(MaxE=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)

1 tháng 11 2020

a) Ta có A = x2 - 2x - 1 = (x2 - 2x + 1) - 2 = (x - 1)2 - 2 \(\ge\) -2 

Dấu "=" xảy ra <=> x - 1 = 0 => x = 1

Vậy Min A = -2 <=> x = 1 

b) Ta có B = 4x2 + 4x + 8 = (4x2 + 4x + 1) + 7 = (2x + 1)2 + 7 \(\ge\)7

Dấu |"=" xảy ra <=> 2x + 1 = 0 => x = -1/2

Vậy Min B = 7 <=> x = -1/2

c) Ta có C = 3x - x2 + 2

                 = -(x2 - 3x - 2)

                = -(x2 - 3x + 9/4 - 9/4 - 2)

                = -[(x - 3/2)2 - 17/4)

                 = -(x - 3/2)2 + 17/4 \(\le\frac{17}{4}\)

Dấu "=" xảy ra <=> x - 3/2 = 0 => x = 3/2

Vậy Max C = 17/4 <=> x = 3/2

d) Ta có D = -x2 - 5x = -(x2 + 5x) = -(x2 + 5x + 25/4 - 25/4) = -(x + 5/2)2 + 25/4 \(\ge\frac{25}{4}\)

Dấu "=" xảy ra <=> x + 5/2 = 0 => x = -5/2

Vậy Max D = 25/4 <=> x = -5/2

e) Ta có E = x2 - 4xy + 5y2 + 10x - 22y + 28

                  = (x2 - 4xy + 4y2) + 10x - 20y + y2 - 2y + 28

                 = (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2

                 = (x - 2y + 5) + (y - 1)2 + 2 \(\ge\)2

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min E = 2 <=> x = -3 ; y = 1