K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Đây nữaHỏi đáp Toán

2 tháng 2 2017

b)x^3 - 6x^2 +11x-6=0

<=>x^3 - x^2 - 5x^2 +5x + 6x - 6=0

<=>x^2(x - 1) - 5x(x - 1) +6(x - 1)=0

<=>(x-1).(x^2 - 5x + 6)=0

<=>(x - 1).(x^2 - 2x - 3x + 6)=0

<=>(x - 1).[(x(x-2)-3(x-2)]=0

<=>(x-1)(x-2)(x-3)=0

<=>x-1=0hoac x-2=0 hoac x-3=0

<=>x=1hoac x=2 hoac x=3

1 tháng 2 2017

bạn mua cái máy tính vinacal xog giải nghiệm ra hết thui

23 tháng 6 2019

a) Ta có:A = 6x2 - 6x + 1 = 6(x2 - x + 1/4) - 1/2 = 6(x - 1/2)2 - 1/2

Ta luôn có : (x - 1/2)2 \(\ge\)\(\forall\)x  --> 6(x  - 1/2)2 \(\ge\) 0 \(\)x

=> 6(x - 1/2)2 - 1/2 \(\ge\)-1/2 \(\forall\)x

hay A \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra khi : (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2

Vậy Amin = -1/2 tại x = 1/2

23 tháng 6 2019

\(a,A=6x^2-6x+1\)

\(=6\left(x^2-x+\frac{1}{6}\right)\)

\(=6\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{6}\right]\)

\(=6\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{12}\right]\)

\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(A_{min}=-\frac{1}{12}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

30 tháng 6 2019

b) B= 5x-10x+3-2

B = (5x2 - 2.5.1 . 12)-2

B = (5x-1)2-2 

ta có :

(5x-1)2 > 0 với mọi x thuộc R

(5x-1)-2 < -2

vậy B < -2

dấu = xảy ra <=> x = 1/5

mai tui lm nốt choa

30 tháng 6 2019

a)

\(A=4x^2-4x-1=4x^2-4x+1-2=\left(2x-1\right)^2-2\)

\(A\ge-2\forall x\in R\) 

Dấu "=" xảy ra <=>\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) 

Vậy Amin =-2 tại x=1/2

23 tháng 6 2019

\(a,A=6x^2-6x+1\)

\(=6\left(x^2-x+\frac{1}{4}\right)-\frac{1}{2}\)

\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Min_A=-\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)

\(b,B=3+2x+3x^2\)

\(=3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{8}{3}\)

\(=3\left(x+\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)

Dấu = xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)

Vậy \(Min_B=\frac{8}{3}\Leftrightarrow x=-\frac{1}{3}\)

\(c,C=4x+2x^2-3\)

\(=2\left(x^2+2x+1\right)-5\)

\(=2\left(x+1\right)^2-5\ge-5\)

Dấu = xảy ra \(\Leftrightarrow x=-1\)

Vậy \(Min_C=-5\Leftrightarrow x=-1\)

\(d,D=10x+6+x^2\)

\(=\left(x^2+10x+25\right)-19\)

\(=\left(x+5\right)^2-19\ge-19\)

Dấu = xảy ra \(\Leftrightarrow x=-5\)

Vậy \(Min_D=-19\Leftrightarrow x=-5\)

\(e,E=8x^2-6x+3\)

\(=8\left(x^2-\frac{3}{4}x+\frac{9}{64}\right)+\frac{15}{8}\)

\(=8\left(x-\frac{3}{8}\right)^2+\frac{15}{8}\ge\frac{15}{8}\)

Dấu = xảy ra \(\Leftrightarrow x=\frac{3}{8}\)

Vậy \(Min_E=\frac{15}{8}\Leftrightarrow x=\frac{3}{8}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

a)

\(A=4x^2-4x+1=2x(2x-3)+2x+1=2x(2x-3)+(2x-3)+4\)

\(=(2x+1)(2x-3)+4\)

Với \(x\geq \frac{3}{2}\Rightarrow \left\{\begin{matrix} 2x+1>0\\ 2x-3\geq 0\end{matrix}\right.\Rightarrow A=(2x+1)(2x-3)+4\geq 4\)

Vậy GTNN của $A$ là $4$ khi $x=\frac{3}{2}$

b)

\(B=5x^2-10x+3=5(x^2-2x+1)-2\)

\(=5(x-1)^2-2\)

Ta thấy \((x-1)^2\geq 0, \forall x\geq 1\Rightarrow B=5(x-1)^2-2\geq -2\)

Vậy GTNN của $B$ là $-2$ khi $(x-1)^2=0\Leftrightarrow x=1$

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

c)

\(C=4x^2-6x+2=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{1}{4}\)

\(=(2x-\frac{3}{2})^2-\frac{1}{4}\)

Ta thấy \((2x-\frac{3}{2})^2\geq 0, \forall x\geq 0\Rightarrow C=(2x-\frac{3}{2})^2-\frac{1}{4}\geq -\frac{1}{4}\)

Vậy GTNN của $C$ là $\frac{-1}{4}$ khi \((2x-\frac{3}{2})^2=0\Leftrightarrow x=\frac{3}{4}\)

d)

\(D=3x^2+2x+1=3(x^2+\frac{2}{3}x+\frac{1}{9})+\frac{2}{3}\)

\(=3(x+\frac{1}{3})^2+\frac{2}{3}\)

Ta thấy \((x+\frac{1}{3})^2\geq 0, \forall x\geq -1\Rightarrow D=3(x+\frac{1}{3})^2+\frac{2}{3}\geq \frac{2}{3}\)

Vậy GTNN của $D$ là $\frac{2}{3}$ khi $(x+\frac{1}{3})^2=0\Leftrightarrow x=-\frac{1}{3}$

a: \(=-\left(x^2+10x-11\right)\)

\(=-\left(x^2+10x+25-36\right)\)

\(=-\left(x+5\right)^2+36< =36\)

Dấu '=' xảy ra khi x=-5

b: \(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=-\left(x-3\right)^2+4< =4\)

Dấu '=' xảy ra khi x=3

c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

d: \(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9< =9\)

Dấu '=' xảy ra khi x=-1