Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN
a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)
c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
a) x3 - 9x2 + 14x = 0
<=> x( x2 - 9x + 14 ) = 0
<=> x( x2 - 2x - 7x + 14 ) = 0
<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0
<=> x( x - 2 )( x - 7 ) = 0
<=> x = 0 hoặc x = 2 hoặc x = 7
b) x3 - 5x2 + 8x - 4 = 0
<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0
<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0
<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0
<=> x( x - 2 )2 - ( x - 2 )2 = 0
<=> ( x - 2 )2( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
c) x4 - 2x3 + x2 = 0
<=> x2( x2 - 2x + 1 ) = 0
<=> x2( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) 2x3 + x2 - 4x - 2 = 0
<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0
<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0
<=> ( 2x + 1 )( x2 - 2 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)
( 2x - 1 )2 + 2( 2x + 1 )( 4x2 - 2x + 1 ) - 4( 4x3 - 3 )
= 4x2 - 4x + 1 + 2( 8x3 + 1 ) - 16x3 + 12
= 4x2 - 4x + 13 + 16x3 + 2 - 16x3
= 4x2 - 4x + 15
= ( 4x2 - 4x + 1 ) + 14
= ( 2x - 1 )2 + 14 ≥ 14 ∀ x
Dấu "=" xảy ra khi x = 1/2
=> GTNN của biểu thức = 14 <=> x = 1/2
4, \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=5x^2+5\ge5\)
Dấu "=" xảy ra khi x=0
5,\(A=4-x^2+2x=5-\left(x^2-2x+1\right)=5-\left(x-1\right)^2\le5\)
Dấu "=" xảy ra khi x=1
\(B=4x-x^2=4-\left(x^2-4x+4\right)=4-\left(x-2\right)^2\le4\)
Dấu "=" xảy ra khi x=2
Quá dễ D:
\(B=4x^2-4x=4\left(x^2-x\right)=4\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=4\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=4\left(x-\frac{1}{2}\right)^2-1\ge-1\)
Vậy GTNN của B là -1\(\Leftrightarrow x=\frac{1}{2}\)
\(C=-x^2-x+1=-\left(x^2+x-1\right)\)
\(=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)\)
\(=-\left[\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\right]=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
...
\(4x^2+4x-5=\left(4x^2+4x+1\right)-6\)
\(=\left(2x+1\right)^2-6\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)