Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x+3y-z-5}{9}=\frac{x+1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) có 2x + 3y - z = 50
\(\Rightarrow\frac{50-5}{9}=5=\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\hept{\begin{cases}x-1=10\\y-2=15\\z-3=20\end{cases}\Rightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}}\)
Trả lời:
Ta có:\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)\(=\frac{2x+3y-z-5}{9}\)(Tính chất dãy tỉ số bẳng nhau)
Mà\(2x+3y-z=50\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}2x-2=20\\3y-6=45\\z-3=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=22\\3y=51\\z=23\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
Vậy\(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
Hok tốt!
Vuong Dong Yet
Bài 1: dễ, nếu cậu tk tớ sẽ giải
Bài 2: ( tự vẽ hình nhess)
Xét tam giác ABN có BC là trung tuyến ứng AN(CA=CN-gt)
mà BM=2/3 BC
=> M la trọng tâm tam giác ABN( khoảng cách từ điểm đến trọng tâm bằng 2/3 trung tuyến tương ứng)
=> AM là trung tuyến ứng BN
mà AM được kéo dài cắt BN tại I nên I là trung điểm BN
Ta có :
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Leftrightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12\cdot49}{49}=12\) ( do \(x+y+z=49\) )
\(\Rightarrow\hept{\begin{cases}\frac{12x}{18}=12\\\frac{12y}{16}=12\\\frac{12z}{15}=12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\) ( thỏa mãn )
Vậy : \(\left(x,y,z\right)=\left(18,16,15\right)\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
\(\Rightarrow\frac{12x+12y+12z}{18+16+15}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{12\left(x+y+z\right)}{49}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) có x + y + z = 49
\(\Rightarrow\frac{12\cdot49}{49}=12=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\hept{\begin{cases}2x=36\\3y=48\\4z=60\end{cases}\Rightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}}\)
\(\left(x-5\right)^8+|y^2-4|=0\)
Vì \(\left(x-5\right)^8\ge0\)\(\forall x\)
\(|y^2-4|\ge0\)\(\forall y\)
\(\Rightarrow\left(x-5\right)^8+|y^2-4|\ge0\)\(\forall x,y\)
mà \(\left(x-5\right)^8+|y^2-4|=0\left(gt\right)\)
\(\Rightarrow\left(x-5\right)^8+|y^2-4|=0\Leftrightarrow\left(x-5\right)^8=0\)và \(|y^2-4|=0\)
\(\Leftrightarrow x-5=0\)và \(y^2-4=0\)
\(\Leftrightarrow x=5\)và \(y^2=4\)
\(\Leftrightarrow x=5\)và \(y=-2\)hoặc \(y=2\)
Vậy x = 5 , y = -2 hoặc y = 2
bài này còn phải sử dụng kiến thức lớp 8 đấy bn ạ
Đặt \(A=\left(2x^2+4\right)^4-3\)
Ta có: \(2x^2\ge0\Rightarrow2x^2+4\ge4\)
\(\Rightarrow\)\(\left(2x^2+4\right)^4\ge16\)
\(\Rightarrow A=\left(2x^2+4\right)^4-3\ge16-3=13\)
Vậy GTNN của A là 13
(Dấu "="\(\Leftrightarrow x=0\))
Cho giải lại nhé
Ta có: \(2x^2\ge0\Rightarrow2x^2+4\ge4\)
\(\Rightarrow\left(2x^2+4\right)^4\ge4^4=256\)
\(\Rightarrow\left(2x^2+4\right)^4-3\ge256-3=253\)
Vậy GTNN của A là 253
(Dấu "="\(\Leftrightarrow x=0\))