K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

\(2x^2-6x+8=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}+8=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{2}\)

Vì \(2\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)

\(ĐTXR\Leftrightarrow x=\dfrac{3}{2}\)

Vậy GTNN của \(2x^2-6x+8\) là \(\dfrac{7}{2}\) khi và chỉ khi \(x=\dfrac{3}{2}\)

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

17 tháng 10 2017

Kb nhas1.jpg

18 tháng 10 2019

 P=2x2+y2-2xy-6x+2y+2024

=>2P=4x2+2y2-4xy-12x+4y+4048

=(2x-y-3)2+y2-2y+1+4038

=(2x-y-3)2+(y-1)2+4038> hoặc = 4038

Dấu = xảy ra <=>2x-y-3=0 và y-1=0=>x=2;y=1=>2p=4038=>p=2019

Vậy Pmin=2019<=>x=2;y=1

18 tháng 10 2019

Ta có: 

P = 2x2 + y2 - 2xy - 6x + 2y + 2024

P = (x2 - 2xy + y2) - 2(x - y) + 1 + (x2 - 4x + 4) + 2019

P = [(x - y)2 - 2(x - y) + 1] + (x - 2)2 + 2019

P = (x - y - 1)2 + (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x-1\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy MinP = 2019 <=> x = 2 và y = 1

19 tháng 6 2015

Q= 2x2+9y2-6xy-6x-12y+2015

=(x2-6xy+9y2-12y+4+4x)+(x2-10x+25)+1986

=(x-3y+2)2+(x-5)2+1986

Do (x-3y+2)2>0

(x-5)2>0

=>(x-3y+2)2+(x-5)2+1986>1986

=>Min Q=1986 <=>(x-3y+2)2=0 và (x-5)2=0

<=>x=5 và y=7/3

19 tháng 6 2015

mình viết nhầm x^2 - 6xy + 9y^2 = (x - 3y)^2

15 tháng 7 2015

 

A=2x2+9y2-6xy-6x+2624

 =x2-6xy+9y2+x2-6x+9+2615

=(x-3y)2+(x-3)2+2615\(\ge\)2615

Dấu "=" xảy ra khi :

x-3y=0 và x-3=0

*x-3=0

x=3

=>3-3y=0

-3y=-3

y=1

Vậy GTNN của A là 2615 tại x=3 và y=1

10 tháng 10 2015

A = 2

B = -5

C = 8 

chắc là z !