\(\frac{2x+1}{x^2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

16 tháng 10 2019

TXĐ:R

Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)

<=> \(Ax^2-Ax+A-x^2-1=0\)

<=> \(\left(A-1\right)x^2-Ax+A-1=0\)

TH1: A =1 => x =0

TH2: A khác 1

phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)

<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)

A min =2/3 thay vào => x

A max =2 thay vào tìm x .

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

NV
16 tháng 7 2020

Biểu thức này ko tồn tại cả min lẫn max

Ví dụ bạn cho \(x=\sqrt{2}+0,0000001\)\(x=\sqrt{2}-0,000001\) và bấm máy sẽ thấy