Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5
A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)
TH1: x-5>0=>x>5=>2/x-5>0(1)
Th2:x-5<0=>x<5=>2/x-5<0(2)
(1), (2)=>x-5<0(b)
(a),(b)=>x-5=-1=>x=4
vậy A nhỏ nhất là -3
\(a)A=2+|x+3|\)
Vì \(|x+3|\ge0\)\(\forall x\)
\(\Rightarrow2+|x+3|\ge2\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_A=2\Leftrightarrow x=-3\)
\(b)B=\frac{3}{2}+|2x-1|\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow\frac{3}{2}+|2x-1|\ge\frac{3}{2}\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)
ok luôn bài này là max nhé :
\(A=-3,7-\left|1,7-m\right|\le-3,7\forall m\) (vì : \(\left|1,7-m\right|\ge0\forall m\) )
" = " <=> m = 1,7
Vậy ...
giải giùm tui