Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
a.
\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)
Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1
b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)
Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2
\(A=\frac{2x+1}{x^2+2}\)
a)Tìm GTLN.
với x=0 có A=1/2 với x khác 0 chia cả tử mẫu cho x^2 ; đặt 1/x=y ta có
\(A=\frac{2x+1}{x^2+2}=\frac{\frac{2}{x}+\frac{1}{x^2}}{1+\frac{2}{x^2}}=\frac{2y+y^2}{1+2y^2}=\frac{2y^2+1-y^2+2y-1}{2y^2+1}=\frac{\left(2y^2+1\right)-\left(y^2-2y+1\right)}{2y^2+1}=1-\frac{\left(y-1\right)^2}{2y^2+1}\)
\(A=\frac{2x+1}{x^2+2}=1-\frac{\left(y-1\right)^2}{2y^2+1}\le1\) đẳng thức khi y=1=> x=1 (*)=> GTLN(A)=1
b) tìm GTNN.
\(A+\frac{1}{2}=\frac{2x+1}{x^2+2}+\frac{1}{2}=\frac{2\left(2x+1\right)+\left(x^2+2\right)}{x^2+2}=\frac{x^2-4x+4}{x^2+2}=\frac{\left(x-2\right)^2}{x^2+2}\ge0\)
\(A+\frac{1}{2}\ge0\Rightarrow A\ge-\frac{1}{2}\) đẳng thức khi x=2 (**)=> GTNN (A)=-1/2
Từ (*)&(**) ta có \(-\frac{1}{2}\le A\le1\)
p/s: mình cố tình (a)&(b) với hai cách khác nhau cho bạn lựa chọn
3