Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a\(A=x^2-3x+5\)
\(\Leftrightarrow A=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+5-\dfrac{9}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Min \(A=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 1
a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA=-9/8 khi x=-1/4
b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)
Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)
Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0
Vậy minB=1 khi x=y=0
lý luận tương tự bài 1, bài này mình làm tắt
Bài 2:
a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)
\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)
Dấu "=" xảy ra khi x=5/6
b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)
\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)
Dấu "=" xảy ra khi x=y=0
a) \(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
b) \(=\left[\left(3x^3+1\right)^2-\left(3x\right)^2\right]-\left(3x^2+1\right)^2\)
\(=-\left(3x\right)^2=9x^2\)
c)\(=\left[\left(2x^2+1\right)^2-\left(2x\right)^2\right]-\left(2x^2+1\right)^2\)
\(=-\left(2x\right)^2=4x^2\)
Theo mình nghĩ thì phải là giá trị lớn nhất
A=-(x^2-4x+5)
A=-[(x-2)^2+1]
Mà (x-2)^2+1>=1
Nên A<=-1
B=-(x^2+6x-1)
B=-[(x+3)^2-10]
nên B<=10
C=-(x^2+3x+2)
C=-(x^2+3x+9/4-1/4)
C=-[(x+3/2)^2-1/4]
Nên C<=1/4
D=-(2x^2-3x+1)
D=-2(x^2-3x/2+1/2)
D=-2(x^2-3x/2+9/16-1/16)
D=-2[(x-3/2)^2-1/16]
Nên D<=1/8
Chúc bạn học tốt!
Ta có : x2 + 4x
= x2 + 4x + 4 - 4
= (x + 2)2 - 4
Mà ; (x + 2)2 \(\ge0\forall x\)
Nên : (x + 2)2 - 4 \(\ge-4\forall x\)
Vậy GTNN của biểu thức là -4 khi x = -2
Ta có : 4x2 - 4x - 1
= (2x)2 - 4x + 1 - 1
= (2x - 1)2 - 1
Mà : (2x - 1)2 \(\ge0\forall x\)
Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)
a) x2 - 2x + 5
= x2 - x - x + 1 + 4
= (x2 - x) - (x - 1) + 4
= x.(x-1) - (x-1) + 4
= (x-1)^2 + 4
Có: (x-1)^2 \(\ge\)0 => (x-1)^2 + 4\(\ge4\)
Dấu ''='' xảy ra khi x-1=0 => x = 1.
Vậy Min của x^2 - 2x + 5 bằng 4 khi x = 1
\(a,A=x^2+2x-3=\left(x^2+2x+1\right)-4=\left(x+1\right)^2-4\ge-4\)
Dấu = xảy ra \(\Leftrightarrow x=-1\)
Vậy \(Min_A=-4\Leftrightarrow x=-1\)
\(b,B=2x^2-x+1=-\left(x^2-2x+1\right)+2=-\left(x-1\right)^2+2\le2\)
Dấu = xảy ra \(\Leftrightarrow x=1\)
Vậy \(Max_B=2\Leftrightarrow x=1\)
\(c,C=-3x^2+3x+1=-3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=-3\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\le\dfrac{7}{4}\)
Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(Max_C=\dfrac{7}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(d,D=-4x^2+2x+3=-4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)+\dfrac{13}{4}=-4\left(x-\dfrac{1}{4}\right)^2+\dfrac{13}{4}\le\dfrac{13}{4}\)
\(Max_D=\dfrac{13}{4}\Leftrightarrow x=\dfrac{1}{4}\)
-Tìm GTNN :
a) A= (x2 + 2.x.1 + 12) - 4 = (x + 1)2 - 4
Do (x+1)2 ≥ 0 ⇒ (x+1)2 - 4 ≥ (-4)
⇒ A đạt GTNN ⇔ (x+1)2 = 0 ⇒ x+1= 0 ⇒ x= -1
Vậy A đạt GTNN là -4 ⇔ x= -1