K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

Phương pháp tách cho dẽ hiểu

*nghiệm x=-3 và x=-4

 chia khoảng

* x<=-4=> A=-2x-6-2x-8=-4x-14 => GTNN A=A(-4)=16-14=2

*-4<=x<=-3=>A=-2x-6+2x+8=8-6=2 A hs

*x>=-3=>A=2x+6+2x+8=4x+14 A nho nhất khi x=-3=> GTNNA=-3.4+14=2

* kết luận GTNN của A la 2

Khi -4<=x<=3

dùng bất đẳng thức trị tuyệt đối không biết bạn có hiểu ko?

!a!+!b!>=!a+b! đẳng thức xẩy ra khi a,b khác dâu" nếu hiểu áp vào ra ngay.

23 tháng 12 2016

A = 2/x+3/+/2x+8/ ta có /2x+8/>bằng 0 => /2x+8/+2/x+3/>bằng 0 nên GTLN là 0 cậu phải tìm giá trị của x để thoả mãn nhé nếu không sẽ không có điểm đâu

B=x-/x/ thì x<bằng /x/nên x-/x/<bằng 0 nên GTLN là 0 cậu phải tìm giá trị của x để thoả mãn nhé nếu không sẽ không có điểm đâu nhévuiyeulike nhé

15 tháng 12 2016

Vì \(\left|x+3\right|\ge0\Rightarrow2.\left|x-3\right|\ge0\)

\(\left|2x+8\right|\ge0\Rightarrow2.\left|x+4\right|\ge0\)

nên A đạt GTNN \(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}}\)

*Nếu x=3 =>2.|x-3|=0; |2x+8|=|14|=14 => GTNN của A=14  (1)

*Nếu x=-4 => |2x+8|=0; 2.|x-3|=2.|-7|=14 => GTNN của A=14  (2)

Từ (1) và (2) ta có GTNN của A=14

Mình không biết đúng hay sai, nếu ai thấy đúng thì k mình nhé

15 tháng 12 2016

A=2.|x+3|+|2x+8|

A=|2x+6|+|2x+8|

A=|-2x-6|+|2x+8|

Áp dụng bđt |a|+|b|>=|a+b| ta có:

A=|-2x-6|+|2x+8|>=|-2x-6+2x+8| = |2|=2

Dấu "=" xảy ra khi 2x+6<=0; 2x+8>=0

=> 2x<=-6; 2x>=-8

=> -8<=2x<=-6

=> -4<=x<=-3

Vậy...

28 tháng 7 2019

Ta có: A = 2x2 - 5x - 8 = 2(x2 - 5/2x + 25/16) - 89/8 = 2(x - 5/4)2 - 89/8

Ta luôn có: 2(x - 5/4)2 \(\ge\)\(\forall\)x

=> 2(x - 5/4)2 - 89/8 \(\ge\)-89/8 \(\forall\)x

Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4

Vậy Min của A = -89/8 tại x = 5/4

Ta có: B = -x2 - 4x + 3 = -(x2 + 4x + 4) + 7 = -(x + 2)2 + 7

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 7 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của B = 7 tại x = -2

a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)

b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)

19 tháng 7 2018

a, \(A=\left|2x-5\right|+\left|2x-12\right|=\left|2x-5\right|+\left|12-2x\right|\ge\left|2x-5+12-2x\right|=7\)

Dấu "=" xảy ra khi \(\left(2x-5\right)\left(12-2x\right)\ge0\Leftrightarrow\frac{5}{2}\le x\le6\)

Vậy Amin=7 khi 5/2 <= x <= 6

b, \(B=\left|3x+6\right|+\left|3x-8\right|=\left|3x+6\right|+\left|8-3x\right|\ge\left|3x+6+8-3x\right|=14\)

Dấu "=" xảy ra khi \(\left(3x+6\right)\left(8-3x\right)\ge0\Leftrightarrow-2\le x\le\frac{8}{3}\)

Vậy...

c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|=2+2=4\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)

Vậy...