Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{-5x^2+3x+2}=\frac{2}{\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}}\)
\(A=\frac{2}{-5\left(x^2-\frac{3}{5}+\frac{9}{100}\right)+\frac{49}{20}}=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\ge\frac{2}{\frac{49}{20}}=\frac{40}{49}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-5\left(x-\frac{3}{10}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{3}{10}\)
Vậy GTNN của \(A\) là \(\frac{40}{49}\) khi \(x=\frac{3}{10}\)
\(B=\frac{5}{5x^2+4x+1}=\frac{5}{\left(5x^2+4x+\frac{4}{5}\right)+\frac{1}{5}}\)
\(B=\frac{5}{5\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{1}{5}}=\frac{5}{5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}}\le\frac{5}{\frac{1}{5}}=25\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(5\left(x+\frac{2}{5}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-2}{5}\)
Vậy GTLN của \(B\) là \(25\) khi \(x=\frac{-2}{5}\)
Chúc bạn học tốt ~
a) Ta có: A bé nhất khi \(-5x^2+3x+2\) lớn nhất
Ta có: \(-5x^2+3x+2=\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}\)
\(=-5\left(x^2-2.\frac{3}{10}+\frac{9}{100}\right)=-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}\le\frac{49}{20}\)
Do đó \(A=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\le\frac{40}{49}\)
Dấu "=" xảy ra \(\Leftrightarrow-5\left(x-\frac{3}{10}\right)^2=0\Leftrightarrow x=\frac{3}{10}\)
Vậy \(A_{max}=\frac{40}{49}\Leftrightarrow x=\frac{3}{10}\)
b) Để B lớn nhất thì \(5x^2+4x+1\) bé nhất.Ta có:
\(5x^2+4x+1=\left(5x^2+4x\right)+1\)
\(=5\left(x^2+\frac{4}{5}x\right)+1=5\left(x^2+2.\frac{4}{10}+\frac{4}{25}\right)+\frac{1}{5}\)
\(=5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Do đó \(B=\frac{5}{5\left(x+\frac{2}{5}\right)^2}\le\frac{5}{\frac{1}{5}}=25\)
Dấu "=" xảy ra \(\Leftrightarrow5\left(x+\frac{2}{5}\right)^2=0\Leftrightarrow x=-\frac{2}{5}\)
Vậy \(B_{max}=25\Leftrightarrow x=-\frac{2}{5}\)
Lần sau đăng 3 - 4 ý/câu hỏi thôi :V
1/ -x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1
\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> GTLN = -1 <=> x = 2
2/ -x2 + 2x - 7 = -( x2 - 2x + 1 ) - 6 = -( x - 1 )2 - 6
\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-6\le-6\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> GTLN = -6 <=> x = 1
3/ -x2 - 6x - 10 = -( x2 + 6x + 9 ) - 1 = -( x + 3 )2 - 1
\(-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> GTLN = -1 <=> x = -3
4/ -x2 + 2x - 2 = -( x2 - 2x + 1 ) - 1 = -( x - 1 )2 - 1
\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> GTLN = -1 <=> x = 1
5/ -9x2 + 24x - 18 = -9( x2 - 8/3x + 16/9 ) - 2 = -9( x - 4/3 )2 - 2
\(-9\left(x-\frac{4}{3}\right)^2\le0\forall x\Rightarrow-9\left(x-\frac{4}{3}\right)^2-2\le-2\)
Đẳng thức xảy ra <=> x - 4/3 = 0 => x = 4/3
=> GTLN = -2 <=> x = 4/3
6/ -4x2 + 4x - 7 = -4( x2 - x + 1/4 ) - 6 = -4( x - 1/2 )2 - 6
\(-4\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-4\left(x-\frac{1}{2}\right)^2-6\le-6\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> GTLN = -6 <=> x = 1/2
7/ -16x2 + 8x - 2 = -16( x2 - 1/2x + 1/16 ) - 1 = -16( x - 1/4 )2 - 1
\(-16\left(x-\frac{1}{4}\right)^2\le0\forall x\Rightarrow-16\left(x-\frac{1}{4}\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x - 1/4 = 0 => x = 1/4
=> GTLN = -1 <=> x = 1/4
8/ -5x2 + 20x - 49 = -5( x2 - 4x + 4 ) - 29 = -5( x - 2 )2 - 29
\(-5\left(x-2\right)^2\le0\forall x\Rightarrow-5\left(x-2\right)^2-29\le-29\)
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> GTLN = -29 <=> x = 2
9/ -x2 + x - 1 = -( x2 - x + 1/4 ) - 3/4 = -( x - 1/2 )2 - 3/4
\(-\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> GTLN = -3/4 <=> x = 1/2
10/ -x2 + 3x - 3 = -( x2 - 3x + 9/4 ) - 3/4 = -( x - 3/2 )2 - 3/4
\(-\left(x-\frac{3}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> GTLN = -3/4 <=> x = 3/2
11/ -x2 + 5x - 8 = -( x2 - 5x + 25/4 ) - 7/4 = -( x - 5/2 )2 - 7/4
\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
=> GTLN = -7/4 <=> x = 5/2
12/ -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1
\(-9\left(x-\frac{2}{3}\right)^2\le0\forall x\Rightarrow-9\left(x-\frac{2}{3}\right)^2-1\le-1\)
Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3
=> GTLN = -1 <=> x = 2/3
13/ -x2 - 8x - 19 = -( x2 + 8x + 16 ) - 3 = -( x + 4 )2 - 3
\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2-3\le-3\)
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> GTLN = -3 <=> x = -4
14/ -x2 + 2/3x - 1 = -( x2 - 2/3x + 1/9 ) - 8/9 = -( x - 1/3 )2 - 8/9
\(-\left(x-\frac{1}{3}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{1}{3}\right)^2-\frac{8}{9}\le-\frac{8}{9}\)
Đẳng thức xảy ra <=> x - 1/3 = 0 => x = 1/3
=> GTLN = -8/9 <=> x = 1/3
Mệt :)
\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)
\(=\left(x-2\right)^2-3\) \(\forall x\in Z\)
\(\Rightarrow A_{min}=-3khix=2\)
\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)
dấu = xảy ra khi x-2=0
=> x=2
Vậy MinA=-3 khi x=2
\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)
dấu = xảy ra khi x+4=0
=> x=-4
Vậy MaxB=9 khi x=-4
\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
dấu = xảy ra khi \(x-\frac{5}{2}=0\)
=> x=\(\frac{5}{2}\)
Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)
\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)
\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
dấu = xảy ra khi \(x+\frac{5}{2}=0\)
=> x\(=-\frac{5}{2}\)
vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất
Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)
\(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)