Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(B=-2x^2+4x+1\)
\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
Ta có:
\(\left(2x-3\right)\left(2x+3\right)=x\left(x-3\right)\)
\(\Rightarrow\left(2x\right)^2-3^2=x^2-3x\)
\(\Rightarrow4x^2-9=x^2-3x\)
\(\Rightarrow4x^2-x^2+3x=9\)
\(\Rightarrow3x^2+3x=9\)
\(\Rightarrow3\left(x^2+x\right)=9\)
\(\Rightarrow x^2+x=3\)
\(\Rightarrow x^2+2\times\frac{1}{2}x+\frac{1}{4}=3+\frac{1}{4}=\frac{13}{4}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\frac{13}{4}\)
Đến đây bạn tự làm nốt nhá!
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha
\(2x\left(x-1\right)-2x^2+x-5=0\)
\(\Leftrightarrow2x^2-2x-2x^2+x-5=0\)
\(\Leftrightarrow-x-5=0\Leftrightarrow x=-5\)
Trả lời:
\(2x.\left(x-1\right)-2x^2+x-5=0\)
\(2x^2-2x-2x^2+x-5=0\)
\(-x-5=0\)
\(-x=5\)
\(x=-5\)
Vậy \(x=-5\)
1 ) 2x2 - 5x + 4x - 10 = 0
=> 2x2 + 4x - 5x - 10 = 0
=> 2x ( x + 2 ) - 5. ( x + 2 ) = 0
=> ( x + 2 ) . ( 2x - 5 ) = 0
=> \(\orbr{\begin{cases}x+2=0\\2x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)
Vậy \(x\in\left\{-2;\frac{5}{2}\right\}\)
2 ) x2 ( 2x - 3 ) + 3 - 2x = 0
=> x2 ( 2x - 3 ) - ( 2x - 3 ) = 0
=> ( 2x - 3 ) . ( x2 - 1 ) = 0
=> \(\orbr{\begin{cases}2x-3=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=3\\x^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};\pm1\right\}\)
\(\left(2x-1\right)^3-8\left(x-1\right)\left(x^2+x+1\right)+12x^2=2x+1\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8\left(x^3-1\right)+12x^2-2x-1=0\)
\(\Leftrightarrow4x+6=0\)
\(\Leftrightarrow2\left(2x+3\right)=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\frac{-3}{2}\)
Đặt \(f\left(x\right)=x^3-2x^2-6x+a\)
Gọi thương của \(f\left(x\right):\left(x-2\right)\)là \(P\left(x\right)\)
\(\Rightarrow f\left(x\right)=P\left(x\right).\left(x-2\right)\)
Thay \(x=2\)ta có:
\(8-8-12+a=0\)
\(\Rightarrow a=12\)
Vậy \(a=2\)là giá trị cần tìm
Lời giải:
ĐKXĐ: $x\neq -1$
$F=\frac{2x}{x^2+2x+1}$
$F-\frac{1}{2}=\frac{2x}{x^2+2x+1}-\frac{1}{2}=\frac{4x-x^2-2x-1}{2(x^2+2x+1)}$
$=\frac{-(x^2-2x+1)}{2(x^2+2x+1)}=\frac{-(x-1)^2}{2(x+1)^2}\leq 0$ với mọi $x\neq -1$
$\Rightarrow F\leq \frac{1}{2}$
Vậy gtln của $F$ là $\frac{1}{2}$ khi $x-1=0\Leftrightarrow x=1$
\(F=\dfrac{2x}{\left(x+1\right)^2}=\dfrac{2\left(x+1\right)-2}{\left(x+1\right)^2}=\dfrac{2}{x+1}-\dfrac{2}{\left(x+1\right)^2}\)
Đặt x + 1 = y => F = \(\dfrac{2}{y}-\dfrac{2}{y^2}\)
Đặt \(\dfrac{1}{y}=t\Rightarrow F=2t-2t^2=-2\left(t^2-t\right)=-2\left(t^2-2.t.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)=-2\left(t-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
\(\Rightarrow F\le\dfrac{1}{2}\).Dấu "=" xảy ra khi: \(t-\dfrac{1}{2}=0\Leftrightarrow t=\dfrac{1}{2}\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{2}\Leftrightarrow y=2\Leftrightarrow x+1=2\Leftrightarrow x=1\)