K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

\(A=\frac{2\left|x+5\right|+11}{\left|x+5\right|+4}=\frac{2\left|x+5\right|+8+3}{\left|x+5\right|+4}=2+\frac{3}{\left|x+5\right|+4}\)

Ta có : \(\left|x+5\right|+4\ge4\Rightarrow\frac{3}{\left|x+5\right|+4}\le\frac{3}{4}\)

\(\Rightarrow A=2+\frac{3}{\left|x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)

Dấu ''='' xảy ra khi x = -5

Vậy GTLN của A bằng 11/4 tại x = -5

11 tháng 8 2021

tks, cảm ơn nhìu ak

11 tháng 8 2021

\(B=\frac{\left|2y+7\right|+13}{2\left|2y+7\right|+6}=\frac{\left|2y+7\right|+3+10}{2\left|2y+7\right|+6}=\frac{1}{2}+\frac{10}{2\left|2y+7\right|+6}\)

Ta có : \(2\left|2y+7\right|+6\ge6\Rightarrow\frac{10}{2\left|2y+7\right|+6}\le\frac{10}{6}=\frac{5}{3}\)

\(\Rightarrow B=\frac{1}{2}+\frac{10}{2\left|2y+7\right|+6}\le\frac{1}{2}+\frac{5}{3}=\frac{13}{6}\)

Dấy ''='' xảy ra khi y = -7/2 

Vậy GTLN của B bằng 13/6 tại y = -7/2 

11 tháng 8 2021

cảm ơn b nhìu

Đáp án :

\(x\in\varnothing\)

# Hok tốt !

26 tháng 7 2021

mn ng có thể ghi ra lời giải k ak

11 tháng 8 2021

Ta có : \(\left|x-2\right|+\left|y-5\right|+10\ge10\)

\(\Rightarrow\frac{-15}{\left|x-2\right|+\left|y-5\right|+10}\ge-\frac{15}{10}=-\frac{3}{2}\)

\(\Rightarrow B=3-\frac{15}{\left|x-2\right|+\left|y-5\right|+10}\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu ''='' xảy ra khi x = 2 ; y = 5 

Vậy GTNN của B bằng 3/2 tại x = 2 ; y = 5

11 tháng 8 2021

sao bạn ko k cho mọi người vậy mn đã tốn công làm rồi mà 

NM
29 tháng 7 2021

a. ta có :

\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm

b.ta có 

\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm

DD
22 tháng 7 2021

d) \(\left|x-1\right|+\left|x-5\right|+\left|2x+5\right|\)

\(=\left|1-x\right|+\left|5-x\right|+\left|2x+5\right|\)

\(\ge\left|1-x+5-x\right|+\left|2x+5\right|\)

\(\ge\left|6-2x+2x+5\right|=11\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(1-x\right)\left(5-x\right)\ge0\\\left(6-2x\right)\left(2x+5\right)\ge0\end{cases}}\Leftrightarrow-\frac{5}{2}\le x\le1\).

e) \(\left|x+2\right|+\left|x-1\right|+\left|x-4\right|+\left|x+5\right|=12\)

\(\Leftrightarrow\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|=12\)

Có \(\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|\ge\left|x+2+1-x\right|+\left|4-x+x+5\right|=3+9=12\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x+2\right)\left(1-x\right)\ge0\\\left(4-x\right)\left(x+5\right)\ge0\end{cases}}\Leftrightarrow-2\le x\le1\).

f) \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|3x-10\right|\)

\(\ge\left|x-1+x-2\right|+\left|3-x+3x-10\right|\)

\(=\left|2x-3\right|+\left|2x-7\right|\)

\(\ge\left|2x-3+7-2x\right|=4\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x-1\right)\left(x-2\right)\ge0\\\left(3-x\right)\left(3x-10\right)\ge0\\\left(2x-3\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow3\le x\le\frac{10}{3}\).

Ta có : \(\left|x-1\right|+\left|x+5\right|+\left|2x-7\right|\)

\(=\left|x-1\right|+\left|x+5\right|+\left|7-2x\right|\)

\(\ge\left|x-1+x+5+7-2x\right|\)

\(=\left|11\right|=11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(7-2x\right)\ge0\)

Lập bảng xét dấu : 

                                                               \(-5\)           \(1\)           \(\frac{7}{2}\)

                                      \(x\)                      |                   |                  |     

                                \(x-1\)                   |    \(-\)      \(0\)  \(-\)    |  \(+\)

                                \(x+5\)                 \(0\)\(-\)       |      \(+\)    |  \(+\)

                                \(7-2x\)                |    \(+\)       |     \(+\)   \(0\)  \(-\)

  \(\left(x-1\right)\left(x+5\right)\left(7-2x\right)\)   \(0\)   \(+\)   \(0\) \(-\)   \(0\) \(-\)

Vậy \(-5\le x\le1\)

Bài này hơi nâng cao nên phải sử dụng kiến thức ngoài để giải ngắn gọn hơn.

Em có thể lên mạng để tìm hiểu thêm về lập bảng xét dấu