K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Mọi người ơi mk đang cần gấp giúp mk với ạ

12 tháng 8 2020

\(-B=x^2-2xy+4y^2-2x-10y-5\)

=> \(-B=\left(x-y-1\right)^2+3y^2-12y+12-18\)

=> \(-B=\left(x-y-1\right)^2+3\left(y-2\right)^2-18\)

CÓ: \(\left(x-y-1\right)^2;3\left(y-2\right)^2\ge0\forall x;y\)

=> \(B\ge-18\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

31 tháng 10 2019

a)\(A=5-8x-2x^2\)

\(=-2\left(x^2+4x-\frac{5}{2}\right)\)

\(=-2\left(x^2+4x+4-\frac{13}{2}\right)\)

\(=-2\left[\left(x+2\right)^2-\frac{13}{2}\right]\)

\(=-2\left[\left(x+2\right)^2\right]+13\le13\)

Vậy \(A_{max}=13\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

28 tháng 8 2018

\(A=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)

\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2-5\right]\)

\(=5-\left(x-y-1\right)^2-3\left(y-2\right)^2\le5\)

Dấu"=" xảy ra  <=>  \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\) <=>  \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy MAX  \(A=5\)khi  \(x=3;\)\(y=2\)

26 tháng 9 2017

\(C=-x^2+2xy-4y^2+2x+10y-3\)

\(=-\left(x^2+2xy-y^2\right)+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10\le10\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy \(C_{max}=10\) tại x = 3; y = 2

a: \(A=-x^2+4x+5\)

\(=-\left(x^2-4x-5\right)\)

\(=-\left(x^2-4x+4-9\right)\)

\(=-\left(x-2\right)^2+9\le9\)

Dấu '=' xảy ra khi x=2

b: \(B=-4x^2+12x-1\)

\(=-\left(4x^2-12x+1\right)\)

\(=-\left(4x^2-12x+9-8\right)\)

\(=-\left(2x-3\right)^2+8\le8\)

Dấu '=' xảy ra khi x=3/2

26 tháng 6 2019

\(A=-x^2+2xy-4y^2+2x+10y-8\)

\(=-x^2+2xy-y^2-3y^2+2x-2y+12y-12+4\)

\(=-\left(x^2-2xy+y^2\right)+\left(2x-2y\right)-1-\left(3y^2-12y+12\right)+5\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y-2\right)^2+5\)

\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]\)\(-3\left(y-2\right)^2+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\)

\(A_{max}=5\Leftrightarrow\hept{\begin{cases}\left(x-y-1\right)^2=0\\3\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x-y-1=0\\y=2\end{cases}}\)\(\Rightarrow x-2-1=0\Leftrightarrow x=3\)

\(KL:A_{max}=5\Leftrightarrow x=3;y=2\)