Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^3:\left|x-2\right|=2\)
\(\Leftrightarrow8:\left|x-2\right|=2\)
\(\Leftrightarrow\left|x-2\right|=8:2\)
\(\Leftrightarrow\left|x-2\right|=4\)
Xét trường hợp 1: \(x-2=4\)
\(\Rightarrow x=4+2\)
\(\Rightarrow x=6\)
Xét trường hợp 2: \(x-2=-4\)
\(\Rightarrow x=-4+2\)
\(\Rightarrow x=-\left(4-2\right)\)
\(\Rightarrow x=-2\)
Vậy \(x=6\) hoặc \(x=-2\)
b)
Bài 2:
Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)
=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)
=> x = 98 * 4 = 392
y = 98 * 5 = 490
z = 196
Vậy x = 392, y = 490, z = 196
Bài 3:
Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B
Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)
=> x = 12 * 4 = 48
y = 12 * 5= 60
Vậy lớp 7A trồng 48 cây
.......lớp 7B trồng 60 cây
Để : 2x - 3 chia hết cho 2
Thì 2x - 3 thuộc B(2) = {0;2;4;6;......}
=> 2x thuộc {5;7;9;.......}
=> x = ?
a)\(\left(5x+1\right)^2=\frac{36}{49}\\ \left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\\ \Rightarrow\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=\frac{-6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-1}{35}\\x=\frac{-13}{35}\end{matrix}\right.\)
vậy...
2.
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
⇒ \(5x+1=\pm\frac{6}{7}\)
⇒ \(\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}5x=\frac{6}{7}-1=-\frac{1}{7}\\5x=\left(-\frac{6}{7}\right)-1=-\frac{13}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-\frac{1}{7}\right):5\\x=\left(-\frac{13}{7}\right):5\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{35};-\frac{13}{35}\right\}.\)
Chúc bạn học tốt!