
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(A=x^2-3x-x+3+11\)
\(=\left(x^2-4x+4\right)+10\)
\(=\left(x-2\right)^2+10\ge10\forall x\in R\)
Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
b) \(B=5-4x^2+4x\)
\(=-\left(4x^2-4x+1\right)+6\)
\(=-\left(2x-1\right)^2+6\le6\forall x\in R\)
Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
\(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)
Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)

\(A=x^2-6x+3\)
\(=\left(x^2-6x+9\right)-6\)
\(=\left(x+3\right)^2-6\)
ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)
vậy gtnn của A là -6 tại x=-3
\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
vay .............................................
2/
\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)
vay .........................................
\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
vay.....................................
nếu có sai mong bạn thông cảm

a: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-1}{x-2}\)
b: Để M đạt giá trị lớn nhất thì x-2=-1
hay x=1
c: Để M=3x thì \(\dfrac{-1}{x-2}=3x\)
\(\Leftrightarrow3x^2-6x+1=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot3\cdot1=36-12=24\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{6}}{6}=\dfrac{3-\sqrt{6}}{3}\\x_2=\dfrac{3+\sqrt{6}}{3}\end{matrix}\right.\)

a)\(\left(4x+5\right)^2-2\left(4x+5\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=\left(4x+5-x-5\right)^2=\left(3x\right)^2=9x^2\)
b) \(3x-x^2-4\)
\(=-x^2+2.x.1,5-2,25+2,25-4\)
\(=-\left(x-1,5\right)^2-1,75\le-1,75\)
Dấu bằng xảy ra khi : \(x-1,5=0\)
\(x=1,5\)
Vậy GTLN của biểu thức trên bằng -1,75 khi x = 1,5


\(B=3x^2-6x+1=3x^2-6x+3-2=3\times\left(x^2-2x+1\right)-2=3\times\left(x-1\right)^2-2\)
\(3\times\left(x-1\right)^2\ge0\Rightarrow3\times\left(x-1\right)^2-2\ge-2\)
\(MinB=-2\Leftrightarrow x=1\)
\(A=-5x^2-4x+13=-5\times\left(x^2+\frac{4}{5}x-\frac{13}{5}\right)=-5\times\left(x^2+2\times x\times\frac{2}{5}+\frac{4}{25}-\frac{4}{25}-\frac{13}{5}\right)=-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\)
\(\left(x+\frac{2}{5}\right)^2\ge0\Rightarrow\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\ge-\frac{69}{25}\Rightarrow-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\le\frac{69}{5}\)
\(M\text{ax}A=\frac{69}{5}\Leftrightarrow x=-\frac{2}{5}\)
\(B=-x^2-10x+8=-x^2-10x-25+33=33-\left(x+5\right)^2\)
\(\left(x+5\right)^2\ge0\Rightarrow33-\left(x+5\right)^2\le33\)
\(M\text{ax}B=33\Leftrightarrow x=-5\)

a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự

A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 2 ≤ 2
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxA = 2 <=> x = -2
B = -x2 + 10x - 24 = -( x2 - 10x + 25 ) + 1 = -( x - 5 )2 + 1
-( x - 5 )2 ≤ 0 ∀ x => -( x - 5 )2 + 1 ≤ 1
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MaxB = 1 <=> x = 5
C = -x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4
-( x + 1/2 )2 ≤ 0 ∀ x => -( x + 1/2 )2 - 3/4 ≤ -3/4
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MaxC = -3/4 <=> x = -1/2
D = -3x2 - 3x - 3 = -3( x2 + x + 1/4 ) - 9/4 = -3( x + 1/2 )2 - 9/4
-3( x + 1/2 )2 ≤ 0 ∀ x => -3( x + 1/2 )2 - 9/4 ≤ -9/4
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MaxD = -9/4 <=> x = -1/2

1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
Trả lời:
a, \(=-x^2+4x+6=-\left(x^2-4x-6\right)=-\left[\left(x^2-4x+4\right)-10\right]=-\left[\left(x-2\right)^2-10\right]\)
\(=-\left(x-2\right)^2+10\le10\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của A = 10 khi x = 2
b, \(B=-x^2-3x=-\left(x^2+3x\right)=-\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)=-\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\right]\)
\(=-\left(x+\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi x + 3/2 = 0 <=> x = - 3/2
Vậy GTLN của B = 9/4 khi x = - 3/2
làm hộ mình luôn ạ
https://olm.vn/hoi-dap/detail/1473716361129.html