Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)
\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)
\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)
Ta có: a+ b= \(\frac{-1+\sqrt{2}}{2}\) + \(\frac{-1-\sqrt{2}}{2}\)= -1
a*b = \(\frac{-1+\sqrt{2}}{2}\)* \(\frac{-1-\sqrt{2}}{2}\)= -\(\frac{1}{4}\)
a2 + b2 = (a+ b)2 - 2ab = 1+ \(\frac{1}{2}\)= \(\frac{3}{2}\)
a4 + b4 = (a2 + b2 )2 - 2a2b2 = \(\frac{9}{4}\)- \(\frac{1}{8}\)= \(\frac{17}{8}\)
a3 + b3 = ( a + b)3 - 3ab(a + b ) = -1-\(\frac{3}{4}\)= \(\frac{-7}{4}\)
vay a7 + b7 = (a3 + b3 )(a4 + b4 ) -a3b3(a+b)= \(\frac{-7}{4}\)* \(\frac{17}{8}\)- (-\(\frac{1}{64}\)) * (-1) = \(\frac{-239}{64}\)
a) Ta có: \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x\right)\)
=> \(A=\frac{1}{x-\sqrt{x}+1}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)
Vậy Max(A) = 4/3 khi x = 1/4
b) \(B=\sqrt{4x-x^2+21}=\sqrt{-\left(x^2-4x+4\right)+25}\)
\(=\sqrt{25-\left(x-2\right)^2}\le\sqrt{25}=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy Max(B) = 5 khi x = 2
c) \(C=1+\sqrt{-9x^2+6x}=1+\sqrt{-\left(9x^2-6x+1\right)+1}\)
\(=1+\sqrt{1-\left(3x-1\right)^2}\le1+\sqrt{1}=2\)
Dấu "=" xảy ra khi: \(\left(3x-1\right)=0\Rightarrow x=\frac{1}{3}\)
Vậy Max(C) = 2 khi x = 1/3
d) Ta có: \(D=\sqrt{x-2}+\sqrt{4-x}\)
=> \(D^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-2+4-x\right)\) ( BĐT Bunhia)
\(=2.2=4\)
=> \(D\le2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x-2=4-x\Rightarrow x=3\)
Vậy Max(D) = 2 khi x = 3
Tìm đc mỗi GTNN, cách tìm GTLN chưa chắc chắn lắm nên mk ko lm nha :D
1/ \(A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(3-x\right)^2}=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
2/ \(B=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(1-\sqrt{x-1}\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=2\)
Có: \(C=\frac{1}{\sqrt{x^2-4x+5}}\)
\(\Leftrightarrow C=\frac{1}{\sqrt{\left(x-2\right)^2+1}}\)\(\le1\)
Vậy Cmin=1 \(\Leftrightarrow x=2\)
Có: \(B=5-\sqrt{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt{\left(x-3\right)^2+5}\) \(\le5-\sqrt{5}\)
Vậy \(B_{min}=5-\sqrt{5}\Leftrightarrow x=3\)
Ta có:
\(\sqrt{6x-x^2-7}\)
\(=\sqrt{-\left(x-3\right)^2+2}\le2\) Và \(\ge0\)
\(\Rightarrow maxA=1+2=3\)
Vậy....
Ta co:\(\sqrt{6x-x^2-7}=\sqrt{-\left(3-x\right)^2+2}\le\sqrt{2}\)
Suy ra:\(A=1+\sqrt{-\left(3-x\right)^2+2}\le1+\sqrt{2}\)
Dau '=' xay ra khi \(x=3\)
Vay \(A_{max}=1+\sqrt{2}\)khi \(x=3\)