K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

Bài 1:

$A=2x^2+y^2-2xy+x+2=(x^2+y^2-2xy)+(x^2+x+\frac{1}{4})+\frac{7}{4}$

$=(x-y)^2+(x+\frac{1}{2})^2+\frac{7}{4}$

Vì $(x-y)^2\geq 0; (x+\frac{1}{2})^2\geq 0$ với mọi $x,y$

$\Rightarrow A\geq 0+0+\frac{7}{4}=\frac{7}{4}$
Vậy $A_{\min}=\frac{7}{4}$. Giá trị này đạt được khi $x-y=x+\frac{1}{2}=0$

$\Leftrightarrow x=y=\frac{-1}{2}$

AH
Akai Haruma
Giáo viên
11 tháng 9 2023

Bài 2:

$B=x^2+9y^2+4z^2-2x+12y-4z+20$

$=(x^2-2x+1)+(9y^2+12y+4)+(4z^2-4z+1)+14$

$=(x-1)^2+(3y+2)^2+(2z-1)^2+14$
Vì $(x-1)^2\geq 0; (3y+2)^2\geq 0; (2z-1)^2\geq 0$ với mọi $x,y,z$

$\Rightarrow B\geq 0+0+0+14=14$

Vậy $B_{\min}=14$. Giá trị này đạt được khi $x-1=3y+2=2z-1=0$

$\Leftrightarrow x=1; y=\frac{-2}{3}; z=\frac{1}{2}$

7 tháng 8 2016

kí hiệu a l b là a chia hết cho b nhé
 xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1 
tương tự : y-1 l x-1 
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)

+> x=y \(\Rightarrow x^2-1\)\(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé 

7 tháng 8 2016

lm hộ t bài 1 nx

4 tháng 8 2016

để mai nhé @

5 tháng 8 2016

a. Min A= 2014 khi x= 0, y= 0