\(A=\dfrac{x^2+10x+16}{x^2+2x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(đk:x^2+2x+2\ne0\Leftrightarrow x^2+2x+1+1=\left(x+1\right)^2+1\ne0\left(luôn-đúng\right)\)

\(A=\dfrac{x^2+10x+16}{x^2+2x+2}\Leftrightarrow A\left(x^2+2x+2\right)=x^2+10x+16\)

\(\Leftrightarrow Ax^2+2Ax+2A-x^2-10x-16=0\)

\(\Leftrightarrow x^2\left(A-1\right)+x\left(2A-10\right)+2A-16=0\)

\(\Rightarrow\Delta\ge0\Leftrightarrow\left(2A-10\right)^2-4\left(A-1\right)\left(2A-16\right)\ge0\)

\(\Leftrightarrow4A^2-40A+100-4\left(2A^2-18A+16\right)\ge0\)

\(\Leftrightarrow-4A^2+32A+36\ge0\Rightarrow-1\le A\le9\Rightarrow\left\{{}\begin{matrix}MinA=-1\\MaxA=9\end{matrix}\right.\)

\(tại\) \(MinA=-1\) \(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=-3\)

\(tại\) \(MaxA=9\) \(dấu"='\) \(xảy\) \(ra\Leftrightarrow x=-0,5\)

20 tháng 10 2021

camon

 

7 tháng 8 2017

\(A=\dfrac{x^2-2x+2}{x^2+2x+2}\)

\(\Leftrightarrow Ax^2+2Ax+2A=x^2-2x+2\)

\(\Leftrightarrow\left(A-1\right)x^2+\left(2A+2\right)x+\left(2A-2\right)=0\) (*)

Để (*) có nghiệm thì

\(\Delta'\ge0\Leftrightarrow\left(A+1\right)^2-2\left(A-1\right)^2\ge0\Leftrightarrow-A^2+6A-1\ge0\)

\(\Leftrightarrow3-2\sqrt{2}\le A\le3+2\sqrt{2}\)

Vậy GTNN của A là \(3-2\sqrt{2}\); GTLN của A là \(3+2\sqrt{2}\)

\(B=\dfrac{x^2+2x+2}{x^2+1}\)

Làm tương tự câu a ta được \(\dfrac{3-\sqrt{5}}{2}\le B\le\dfrac{3+\sqrt{5}}{2}\)

7 tháng 8 2017

A=\(\dfrac{x^2-2x+2}{x^2+2x+2}\)

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

AH
Akai Haruma
Giáo viên
15 tháng 11 2017

Lời giải:

Biểu thức 1:

\(y=\frac{2x^2-2x+2}{x^2+1}=\frac{2(x^2+1)-2x}{x^2+1}\)

\(\Leftrightarrow y=2-\frac{2x}{x^2+1}\)

Áp dụng BĐT AM-GM ta có: \(x^2+1\geq 2\sqrt{x^2}\Leftrightarrow x^2+1\geq 2|x|\)

\(\Rightarrow (x^2+1)^2\geq 4x^2\)

\(\Rightarrow \left(\frac{2x}{x^2+1}\right)^2\leq 1\Leftrightarrow -1\leq \frac{2x}{x^2+1}\leq 1\)

Từ đây suy ra \(\left\{\begin{matrix} y=2-\frac{2x}{x^2+1}\geq 1\Leftrightarrow x=1\\ y=2-\frac{2x}{x^2+1}\leq 3\Leftrightarrow x=-1\end{matrix}\right.\)

Vậy \(y_{\min}=1;y_{\max}=3\)

Biểu thức 2:

ĐKXĐ: $x,y$ không đồng thời bằng 0

\(Q=\frac{2x^2+4xy+5y^2}{x^2+y^2}=\frac{(x^2+y^2)+(x+2y)^2}{x^2+y^2}\)

\(\Leftrightarrow Q=1+\frac{(x+2y)^2}{x^2+y^2}\)

Ta thấy \((x+2y)^2\geq 0\forall x,y\in\mathbb{R}; x^2+y^2>0\) (nằm trong khoảng xác định)

\(\Rightarrow \frac{(x+2y)^2}{x^2+y^2}\geq 0\Rightarrow Q\geq 1\)

Vậy \(Q_{\min}=1\Leftrightarrow x=-2y\) và \(x,y \neq 0\)

Mặt khác theo BĐT Bunhiacopxky:

\((x+2y)^2\leq (x^2+y^2)(1+2^2)=5(x^2+y^2)\); \(x^2+y^2>0\) trong khoảng xác định

\(\Rightarrow \frac{(x+2y)^2}{x^2+y^2}\leq \frac{5(x^2+y^2)}{x^2+y^2}=5\)

\(\Rightarrow Q\leq 1+5\Leftrightarrow Q\leq 6\Leftrightarrow Q_{\max}=6\)

Dấu bằng xảy ra khi \(\frac{x}{1}=\frac{y}{2}\Leftrightarrow 2x=y\) và \(x,y\neq 0\)

24 tháng 7 2018

BT1.

a,Ta có :\(A^2=-5x^2+10x+11\)

\(=-5\left(x^2-2x+1\right)+16\)

\(=-5\left(x-1\right)^2+16\)

Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Dấu ''='' xảy ra \(\Leftrightarrow x=1\)

Vậy Max A = 4 \(\Leftrightarrow x=1\)

Câu b,c tương tự nhé.

11 tháng 8 2017

a) \(B=-3x^2-4x+1\)

\(B=-\left(3x^2+4x-1\right)\)

\(B=-\left[\sqrt{3}x+2.\sqrt{3}x.+\dfrac{2\sqrt{3}}{3}+\left(\dfrac{2\sqrt{3}}{3}\right)^2-\left(\dfrac{2\sqrt{3}}{3}\right)^2-1\right]\)

\(B=-\left(\sqrt{3}x+\dfrac{2\sqrt{3}}{3}\right)^2+\dfrac{7}{3}\le\dfrac{7}{3}\)

\(Max_B=\dfrac{7}{3}\) khi \(x=\dfrac{-2}{3}\)

b) \(C\left(x\right)=x^4-10x^3+26x^2-10x+30\)

\(=\left(x^2\right)^2-2.x^2.5x+\left(5x\right)^2+x^2-2.x.5+5^2+5\)

\(=\left(x^2-5x\right)^2+\left(x-5\right)^2+5\)

\(C\left(y\right)=\left(y+1\right)\left(y+2\right)\left(y+3\right)\left(y+4\right)\)

Nhóm (y+1)(y+4)=t

Nhóm (y+2)(y+3)=t+2

Xong tìm Min được liền

c) Min=2010

d) Viết đề thiếu dấu, có vấn đề, xem lại

e) C= -[(x-y)2+2(x-y).7+72+x2-2.x.2+22-1945]

Xong tìm được Max

10 tháng 8 2017

@Nguyễn Quang Định @Phương An @Hoàng Lê Bảo Ngọc