K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 2 2017

Giải:

(Hàm số không có tập xác định bao gồm \(0\) nên phải là \((0,3]\))

\(f'(x)=6x^2-\frac{6}{x^3}=\frac{6(x^5-1)}{x^3}=0\Leftrightarrow \) \(x=1\)

Bây giờ xét:

\(f(1)=10\)

\(f(3)=\frac{178}{3}\)

Vậy \(\left\{\begin{matrix} f_{\min}=10\Leftrightarrow x=1\\ f_{\max}=\frac{178}{3}\Leftrightarrow x=3\end{matrix}\right.\)

20 tháng 5 2017

Chọn B

29 tháng 8 2018

9 tháng 6 2019
6 tháng 9 2021

\(y'=1-\sqrt{2}\sin x=\dfrac{1}{\sqrt{2}}\Rightarrow x=\dfrac{\pi}{4}\\ y\left(0\right)=\sqrt{2};y\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+1;y\left(\dfrac{\pi}{2}\right)=\dfrac{\pi}{2}\\ \Rightarrow y_{max}=y\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+1\\ y_{min}=y\left(0\right)=\sqrt{2}\)

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

2 tháng 4 2017

1 tháng 1 2019