Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
\(x^2+x+\frac{1}{x^2}+2x+2=\left(x^2+2+\frac{1}{x^2}\right)+\left(x+1\right)^2-1=\left(x+\frac{1}{x}\right)^2+\left(x+1\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất của biểu thức trên là -1 khi x=-1.
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=1+(m-1)(m-3)\geq 0\Leftrightarrow (m-2)^2\geq 0\Leftrightarrow m\in\mathbb{R}$
Ta có:
$x^2-2x-(m-1)(m-3)=0$
$\Leftrightarrow [x-(m-1)][x+(m-3)]=0$
$\Rightarrow (x_1,x_2)=(m-1,3-m)$ và hoán vị
Nếu $x_1=m-1; x_2=3-m$ thì: $A=(x_1+1)x_2=m(3-m)=3m-m^2=\frac{9}{4}-(m-\frac{3}{2})^2\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$ khi $m=\frac{3}{2}$
Nếu $x_1=3-m; x_2=m-1$ thì:
$A=(4-m)(m-1)=5m-4-m^2=\frac{9}{4}-(m-\frac{5}{2})^2\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$ khi $m=\frac{5}{2}$
Vậy tóm lại $m=\frac{3}{2}$ hoặc $m=\frac{5}{2}$ thì $A_{\max}$
Vì `x^2 >=0 => x^2+1, x^2+3 > 0`.
Ta có: `A = (x^2+1)/(x^2+3) = 1 - 2/(x^2 +3)`
Để `A` nhỏ nhất thì `x^2 + 3` nhỏ nhất.
`=> x^2 + 3 = 3 ( x^2+3>=3)`
`=> x = 0`.
`=> M``i``n_A = 1 - 2/3 = 1/3 <=> x = 0`.
x2+1/(x2+3) là x2+(1/(x2+3)) chứ không phải là (x2+1)/(x2+3)