K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

TXĐ:R

Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)

<=> \(Ax^2-Ax+A-x^2-1=0\)

<=> \(\left(A-1\right)x^2-Ax+A-1=0\)

TH1: A =1 => x =0

TH2: A khác 1

phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)

<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)

A min =2/3 thay vào => x

A max =2 thay vào tìm x .

31 tháng 1 2022

bạn ơi x+1 hay \(x^2+1\) vậy pạn??

\(\dfrac{\left(x+1\right)}{x^2+x+1}\)

18 tháng 3 2021

Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?

 

11 tháng 1 2017

Nhận xét : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\) 

\(A=\frac{x+1}{x^2+x+1}\)  \(\Leftrightarrow A\left(x^2+x+1\right)=x+1\Leftrightarrow Ax^2+x\left(A-1\right)+\left(A-1\right)=0\) (*)

Ta coi PT trên là PT bậc hai ẩn x.

Xét biệt thức \(\Delta=\left(A-1\right)^2-4A\left(A-1\right)=-3A^2+2A+1=\left(1-A\right)\left(3A+1\right)\)

Để tồn tại GTLN và GTNN tức là tồn tại giá trị của x thỏa mãn PT (*) có nghiệm, tức \(\Delta\ge0\)

Hay \(-\frac{1}{3}\le A\le1\)

Từ đó tìm được min A = -1/3 và max A = 1 (bạn tự tìm x)

11 tháng 1 2017

\(A=\frac{2y+2}{y^2+3}\Leftrightarrow\)

\(A-1=\frac{\left(2y+2\right)-y^2-3}{y^2+3}=\frac{-\left(y-1\right)^2}{y^2+3}\le0\Rightarrow A\le1\) đẳng thức khi y=1=> x=0

ay^2+3a-2y-2

1-a(3a-2)=3a^2-2a-1<0

a=1

a=-1/3

22 tháng 3 2019

Dùng miền giá trị đi , lười làm quá

10 tháng 7 2021

undefined

31 tháng 1 2022

là \(4x+\dfrac{1}{x^2}+2x+2\)  hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0

31 tháng 1 2022

cái phía sau nha bạn ơi 

2 tháng 3 2018

Mong mn giúp đỡ mình nhé