Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bên học24 mình đã xài \(\Delta\) vậy bên này mình sẽ xài HĐT kiểu Cosi như ý bn :))
Áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\) ta có:
\(x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\)
\(\Rightarrow A\le4+\frac{A}{2}\Rightarrow A\le8\)
Đẳng thức xảy ra khi \(x=y=\pm2\)
*)Nếu \(xy\ge0\Rightarrow A\ge4\)
*)Nếu \(xy< 0\). WLOG \(x>0;y< 0\). \(y\rightarrow-z\left(z>0\right)\)
Have \(\frac{A}{4}=\frac{x^2+y^2}{4}=\frac{x^2+y^2}{x^2+y^2-xy}\)
\(=1+\frac{xy}{x^2+y^2+xy}=1-\frac{zx}{x^2+z^2+xz}\)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}x^2+z^2\ge2xz\\x^2+z^2+xz\ge3xz\end{cases}}\)\(\Rightarrow\frac{xz}{x^2+z^2+zx}\le\frac{1}{3}\)
\(\Rightarrow\frac{A}{4}=1-\frac{zx}{x^2+z^2+xz}\ge1-\frac{1}{3}=\frac{2}{3}\Rightarrow A\ge\frac{8}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=\frac{2}{\sqrt{3}}\\y=-\frac{2}{\sqrt{3}}\end{cases}}\) hoặc \(\hept{\begin{cases}x=-\frac{2}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)
\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).
Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)
+,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)
+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)
Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)
Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)
+,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)
+,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)
M=3xy+y2=21(x2+23xy+3y2)−21x2−21y2
=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21(x+3y)2−21≥−21.
Nên GTNN của M là -\frac{1}{2}−21 đạt được khi x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3y⇒x2=3y2⇒4y2=1⇒y=±21
+,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21⇒x=−23
+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21⇒x=23
Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2+y2=23x2+3y2=23
Nên GTLN của M là \frac{3}{2}23 đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21
+,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21⇒y=23
+,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21⇒y=−23
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(x,y>0\) nên \(\dfrac{A}{4}=\dfrac{x^2+y^2}{x^2+y^2-xy}\)
Đặt \(\dfrac{x}{y}=a\left(a>0\right)\) thì ta có:
\(\dfrac{A}{4}=\dfrac{a^2+1}{a^2-a+1}\Leftrightarrow A\left(a^2-a+1\right)=4\left(a^2+1\right)\)
\(\Leftrightarrow a^2\left(A-4\right)-Aa+A-4=0\)
Ta có: \(\Delta=A^2-4\left(A-4\right)^2\ge0\Leftrightarrow\dfrac{8}{3}\le A\le8\)
Tìm min:
Ta có: \(x^2+y^2-xy=4\)
\(\Leftrightarrow x^2+y^2=4+xy\le4+\dfrac{x^2+y^2}{2}\) (Vì \(\left(x-y\right)^2\ge0\))
\(\Leftrightarrow\dfrac{A}{2}\le4\)
\(\Leftrightarrow A\le8\)
Tìm Max
\(x^2+y^2-xy=4\)
\(\Leftrightarrow x^2+y^2=4+xy\)
\(\Leftrightarrow3\left(x^2+y^2\right)=8+\left(x+y\right)^2\ge8\)
\(\Leftrightarrow A\ge\dfrac{8}{3}\)