\(\frac{\sqrt{x-2019}}{2019x}+\frac{\sqrt{y-2020}}{2020y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2019

ĐKXĐ: \(x\ge2020\)

- Với \(x=2020\Rightarrow A=\frac{1}{2022}\)

- Với \(x>2020\)

\(A=\frac{\sqrt{x-2019}}{x-2019+2021}+\frac{\sqrt{x-2020}}{x-2020+2020}\)

\(A=\frac{1}{\sqrt{x-2019}+\frac{2021}{\sqrt{x-2019}}}+\frac{1}{\sqrt{x-2020}+\frac{2020}{\sqrt{x-2020}}}\)

\(A\le\frac{1}{2\sqrt{2021}}+\frac{1}{2\sqrt{2020}}\)

So sánh với \(\frac{1}{2022}\Rightarrow A_{max}=\frac{1}{2\sqrt{2019}}+\frac{1}{2\sqrt{2020}}\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-2019=2021\\x-2020=2020\end{matrix}\right.\) \(\Rightarrow x=4040\)

30 tháng 12 2019

mình nghĩ ra 2 cách bn thik cách nào thì làm nhé

Hỏi đáp ToánHỏi đáp Toán

4 tháng 2 2020

Thay 2020=x+y+z vao mẫu đc

\(\frac{xy}{\sqrt{xy+zx+zy+z^2}}=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{2}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)(Cauchy)

Làm tương tự mấy cái kia sau đó ghép mấy cái cũng mẫu lại là ra

4 tháng 2 2020

bạn làm rõ ra đc k

19 tháng 12 2019
https://i.imgur.com/jd3dWdi.jpg
10 tháng 6 2020

x,y,z trong căn mak bạn nên : x = 2022, y = 2023, z = 2024 chứ nhò

23 tháng 12 2019

với \(x\ge\frac{2020}{2019}\)

\(\sqrt{2020x-2019}+2019\left(x+1\right)-\sqrt{2019x-20120}\)\(=0\)

\(\Leftrightarrow\sqrt{2020x-2019}-\sqrt{2019x-2020}=-2019\left(x+1\right)\)

\(\Leftrightarrow2020x-2019-\left(2019x-2020\right)=-2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\)

\(\Leftrightarrow\left(x+1\right)+2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[1+2019\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\right]=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)(không thỏa mãn)

vậy phương trình vô nghiệm

25 tháng 6 2020

Đặt P = ...

Ta có: \(P=\sum\sqrt{x+\frac{yz}{x+y+z}}=\sum\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x+y+z}}=\frac{\sum\sqrt{\left(x+y\right)\left(x+z\right)}}{\sqrt{2020}}\)

\(\le\frac{\sum\left(x+y+x+z\right)}{2\sqrt{2020}}=\frac{4.\left(x+y+z\right)}{2\sqrt{2020}}=2\sqrt{2020}=4\sqrt{505}\)

Dấu "=" xảy ra khi và chỉ khi x = y = z = 2020/3