Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)
Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).
\(---\)
b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).
\(---\)
c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)
\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)
Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).
a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{2}{5}-x=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
Vậy: ...
b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)
Dấu "=" xảy ra:
\(x+\dfrac{2}{3}=0\)
\(\Rightarrow x=-\dfrac{2}{3}\)
Vậy: ...
c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)
Dấu "=" xảy ra:
\(\dfrac{7}{4}-x=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy: ...
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a, Ta có :
\(M=4\left|x+3\right|\ge0\) với \(\forall x\)
\(\Rightarrow7-4\left|x+3\right|\le7 với \forall x\)
Dấu '' = '' xảy ra khi:
\(\left|x+3\right|=0\\ \Rightarrow x+3=0\\ \Rightarrow x=-3\)
Vậy GTLN của \(M=7-4\left|x+3\right|\) là khi \(x=-3\)
b,
Để \(N=\dfrac{18}{\left|x-2\right|+9}+5\) có giá trị lớn nhất thì \(\dfrac{18}{\left|x-2\right|+9}\) phải lớn nhất
\(\Rightarrow\left|x-2\right|+9\) Phải nhỏ nhất và lớn hơn 0
Ta có:
\(\left|x-2\right|\ge0 với \forall x\)
\(\Rightarrow\left|x-2\right|+9\ge0 với \forall x\)
Dấu '' = '' xảy ra khi:
\(\left|x-2\right|=0\\ \Rightarrow x-2=0\\ \Rightarrow x=2\)
\(\Rightarrow\dfrac{18}{\left|x-2\right|+9}+5=2+5=7\)
Vậy GTLN của \(N=\dfrac{18}{\left|x-2\right|+9}+5\) là 7 khi \(x=2\)
Lời giải:
$|2x+5|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow -|2x+5|\leq 0$
$\Rightarrow M=-|2x+5|+7\leq 7$
Vậy gtln của $M$ là $7$. Giá trị này đạt tại $2x+5=0\Leftrightarrow x=\frac{-5}{2}$
--------------------------------
$|x+2|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow N=4-3|x+2|\leq 4$
vậy gtln của $N$ là $4$ khi $x=-2$
-----------
$|x+9|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow |x+9|+2\geq 2$
$\Rightarrow R=\frac{18}{|x+9|+2}\leq \frac{18}{2}=9$
Vậy gtln của $R$ là $9$ khi $x=-9$