\(-4x^2+5x-21\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

\(-4x^2+5x-21\)

\(=-4\left(x^2-\frac{5}{4}x\right)-21\)

\(=-4\left(x^2-2x.\frac{5}{8}+\frac{25}{64}\right)-21+\frac{25}{16}\)

\(=-4\left(x-\frac{5}{8}\right)^2-\frac{311}{16}\)

Có \(\left(x-\frac{5}{8}\right)^2\ge0\) với mọi x

=> \(-4\left(x-\frac{5}{8}\right)^2\le0\)với mọi x

=> \(-4\left(x-\frac{5}{8}\right)^2-\frac{311}{16}\le\frac{-311}{16}\)với mọi x

Dấu "=" xảy ra <=> \(x-\frac{5}{8}=0\)<=> \(x=\frac{5}{8}\)

KL: GTLN của biểu thức là \(\frac{-311}{16}\)<=> \(x=\frac{5}{8}\)

6 tháng 8 2016

\(A=-4x^2+5x-21\)

\(=-\left[\left(2x\right)^2-2\times2x\times\frac{5}{4}+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2+21\right]\)

\(=-\left[\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\right]\)

\(\left(2x-\frac{5}{4}\right)^2\ge0\)

\(\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\ge\frac{311}{16}\)

\(-\left[\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\right]\le-\frac{311}{16}\)

Vậy Max A = \(-\frac{311}{16}\) khi x = \(\frac{5}{8}\)

14 tháng 11 2018

M = 4x2 + 4x + 5 

M = (4x2 + 4x + 1) + 4

M = (2x + 1)2 + 4

Vì (2x + 1)2 ≥ 0

=> (2x + 1)2 + 4 ≥ 4 <=> M ≥ 4

=> GTNN của M bằng 4

Dấu "=" xảy ra khi\(\left(2x+1\right)^2=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của M bằng 4

14 tháng 11 2018

À thôi không cần giải nữa mình ra kết quả rồi

28 tháng 10 2019

Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinA = 3 <=> x = -1

28 tháng 10 2019

\(2x^2+4x+5\)

\(=2\left(x^2+2x+\frac{5}{2}\right)\)

\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)

\(=2\left(x+1\right)^2+3\ge3\)

Dấu '' = '' xảy ra khi 

\(\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy............................

P/s : sai thì thôi nha

10 tháng 12 2017

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{5}{2}^2\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\le\frac{1}{\frac{31}{4}}=\frac{4}{31}\)

Dấu "=" xảy ra khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)

Vậy GTLN của \(D=\frac{4}{31}\)tại \(x=-\frac{5}{2}\)

10 tháng 12 2017

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

D đạt giá trị lớn nhất khi và chỉ khi \(x+\frac{5}{2}=0\leftrightarrow x=\frac{-5}{2}\)

Vậy \(D=\frac{4}{31}\leftrightarrow x=\frac{-5}{2}\)

30 tháng 5 2017

TA CÓ \(\frac{16x^2-5x+3}{4x}=4x-\frac{5}{4}+\frac{3}{4x}\)

Áp dụng BDT cô-si có \(4x-\frac{5}{4}+\frac{3}{4x}\ge-\frac{5}{4}+2\sqrt{4x\times\frac{3}{4x}}=-\frac{5}{4}+2\times3=\frac{19}{4}\)

Dấu bằng xảy ra \(\Leftrightarrow4x=\frac{3}{4x}\Leftrightarrow x=\frac{\sqrt{3}}{4}\)

6 tháng 11 2017

bạn kia làm đúng rồi 

k tui nha

thank

28 tháng 10 2019

x^2 -4x+5+y^2+2y

=(x^2-4x+4)+(y^2+2y +1)

=(x-2)^2+(y+1)^2

vì (x-2 )^2 >= 0

(y+1)^2>=0

=)) (x-2)^2 +(y+1)^2 >=0

dấu "=" xảy ra 

<=>x-2 =0 =)x=2

và y+1=0 =)y=-1

vậy..........

28 tháng 10 2019

H = x2 - 4x + 5 + y2 + 2y

H = ( x- 4x + 4) + ( y+ 2y + 1 ) 

H = ( x - 2 )2 + ( y + 1 )\(\ge\)0

Dấu = xảy ra\(\Leftrightarrow\)x - 2 = 0 và y + 1 = 0

                        \(\Rightarrow\)x = 2 và y = - 1

Vậy : Min H = 0 \(\Leftrightarrow\)x = 2 và y = - 1

a) \(A=x^2-6x+11\)

\(\Rightarrow A=x^2-6x+9+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 3

Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5\right)-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)

Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)

\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)

Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)

c) \(C=5x-x^2\)

\(\Rightarrow C=-\left(x^2-5x\right)\)

\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)

Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

4 tháng 7 2017

a, \(A=4x^2-4x+2017\)

\(=4x^2-4x+1+2016\)

\(=\left(2x-1\right)^2+2016\ge2016\)

Dấu " = " khi \(\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MIN_A=2016\) khi \(x=\dfrac{1}{2}\)

b, \(B=-x^2+5x-2018\)

\(=-\left(x^2-5x+2018\right)\)

\(=-\left(x^2-\dfrac{5}{2}x2+\dfrac{25}{4}+\dfrac{8047}{4}\right)\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2+\dfrac{8047}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2-\dfrac{8047}{4}\le\dfrac{-8047}{4}\)

Dấu " = " khi \(\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(MAX_B=\dfrac{-8047}{4}\) khi \(x=\dfrac{5}{2}\)

4 tháng 7 2017

a, \(4x^2-4x+2017=4x^2-2x-2x+1+2016\)

\(=\left(2x-1\right)^2+2016\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(2x-1\right)^2+2016\ge2016\) với mọi giá trị của \(x\in R\)

Để \(\left(2x-1\right)^2+2016=2016\) thì \(2x-1=0\)

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy......................

b, \(-x^2+5x-2018=-\left(x^2-2,5x-2,5x+6,25+2011,75\right)\)

\(=-\left[\left(x-2,5\right)^2+2011,75\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2,5\right)^2+2011,75\ge2011,75\)

\(\Rightarrow-\left[\left(x-2,5\right)^2+2011,75\right]\le-2011,75\)với mọi giá trị của \(x\in R\)

Để \(-\left[\left(x-2,5\right)^2+2011,75\right]=-2011,75\) thì \(\left(x-2,5\right)^2=0\)

\(\Rightarrow x=2,5\)

Vậy...............

Chúc bạn học tốt!!!

29 tháng 10 2018

\(A=x^2-8x+1=\left(x^2-8x+16\right)-15=\left(x+4\right)^2-15\)

Ta có \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-15\le-15\)

\(\Rightarrow Max_A=-15\Leftrightarrow\left(x+4\right)^2-15=-15\)

\(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)

29 tháng 10 2018

a) ta có: A = x^2 - 8x + 1 = x^2 - 2.4.x + 16 - 15 = (x-4)^2 -15

=> giá trị nhỏ nhất của A = -15

b) ta có: B = 4 - x^2 + 4x = - (x^2 -4x + 4) + 8 = -(x-2)^2 +8

=> giá trị lớn nhất của B = 8

c) ta có: C = 3x^2 - 2x + 1

\(^2\ \)=> 3C =9 x^2 - 6x + 3

3C = 9x^2 - 2.3.x + 1 + 2

3C = (3x-1)^2 + 2

=> giá trị nhỏ nhất của 3C = 2 => giá trị nhỏ nhất của C = 2/3