Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|-x+8\right|-21\)
\(A=\left|-x+8\right|-21\ge-21\)
\(MinA=-21\Leftrightarrow-x+8=0\)\(\Leftrightarrow x=8\)
\(B=\left|-x-17\right|+\left|y-36\right|+12\)
\(B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)
\(MinB=12\Leftrightarrow\hept{\begin{cases}-x-17=0\\y-36=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=36\end{cases}}\)
\(C=-\left|2x+8\right|-35\)
\(C=-\left|2x+8\right|-35\le-35\)
\(MaxC=-35\Leftrightarrow2x+8=0\Leftrightarrow x=-4\)
\(\text{a) A = | -x + 8| - 21}\)
Vì | -x + 8| \(\le\) 0 ( với mọi x )
=> A = | -x + 8| - 21\(\ge\) -21
=> Amax = -21 khi | -x + 8| = 0 => -x + 8 = 0 => -x = -8 => x = 8
Vậy với Amin = -21 thì x = 8
b) \(B=\left|-x-17\right|+\left|y-36\right|+12\)
Vì \(\left\{\begin{matrix}\left|-x-17\right|\ge0\\\left|y-36\right|\ge0\end{matrix}\right.\)=> \(\left|-x-17\right|+\left|y-36\right|\ge0\)
=> \(B=\left|-x-17\right|+\left|y-36\right|+12\le12\)
=> Bmin = 12 khi \(\left|-x-17\right|+\left|y-36\right|=0\)
=> \(\left\{\begin{matrix}\left|-x-17\right|=0\\\left|y-36\right|=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x-17=0\\y-36=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x=17\\y=36\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
Vậy Bmin = 12 khi \(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
c) \(C=-\left|2x-8\right|-35\)
Vì \(-\left|2x-8\right|\ge0\)
=> \(C=-\left|2x-8\right|-35\ge-35\)
=> Cmin = -35 khi \(-\left|2x-8\right|=0\)=> \(-2x-8=0\)=>\(-2x=8\)=> \(x=4\)
Vậy Cmin = -35 khi x = 4
d) \(D=3\left(3x-12\right)^2-37\)
Vì \(\left(3x-12\right)^2\ge0\)
=> \(3\left(3x-12\right)^2\ge0\)
=> \(D=3\left(3x-12\right)^2-37\ge-37\)
=> Dmin = -37 khi \(3\left(3x-12\right)^2=0\) => \(\left(3x-12\right)^2=0\)=> \(3x-12=0\)=> \(3x=12\)=>\(x=4\)
Vậy Dmin = -37 khi x = 4
a, A=|-x+8|-21
Vì |-x+8|>hoặc =0 với mọi x
suy ra |-x+8|-21>hoặc = -21
Dấu = xảy ra khi và chỉ khi |-x+8|=0
Khi và chỉ khi -x+8=0
Khi và chỉ khi-x=-8
khi và chỉ khi x =8
Vậy GTNN của A là -21 tại x=8
\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)
Dấu = xảy ra khi x=-1
a) ta có : \(\left(x+1\right)^{2018}\ge0\) với mọi x \(\Rightarrow A=4-\left(x+1\right)^{2018}\le4\) với mọi x
\(\Rightarrow GTLN\) của A là 4 khi \(\left(x+1\right)^{2018}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
vậy \(GTLN\) của A là 4 khi \(x=-1\)
b) ta có : \(\left(x-3\right)^2\ge0\) với mọi x \(\Rightarrow B=\left(x-3\right)^2-2017\ge-2017\) với mọi x
\(\Rightarrow GTNN\) của B là \(-2017\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
vậy \(GTNN\) của B là \(-2017\) khi \(x=3\)
c) ta có : \(\left(x+1\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+1\right)^2+2\ge2\) với mọi x
ta có : \(C=\dfrac{4}{\left(x+1\right)^2+2}\) lớn nhất \(\Leftrightarrow\left(x+1\right)^2+2\) là số dương bé nhất
ta có : \(\left(x+1\right)^2+2\ge2\) với mọi x \(\Rightarrow\) GTNN của \(\left(x+1\right)^2+2\) là 2 khi \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
khi đó \(C=\dfrac{4}{\left(-1+1\right)^2+2}=\dfrac{4}{2}=2\)
vậy GTLN của C là 2 khi \(x=-1\)
d) ta có : \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}\ge0\forall x;y\\\left|y+1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow D=\left(2x-y+1\right)^{2018}+\left|y+1\right|+2017\ge2017\) với mọi x ; y
\(\Rightarrow GTNN\) của D là 2017 khi \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}=0\\\left|y+1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x-\left(-1\right)+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)
vậy GTNN của D là 2017 khi \(x=y=-1\)
a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương
2 câu là tìm GTNN đúng hông bạn :)
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(A=2000\left(x-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x-1=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(A\) là \(0\) khi \(x=1\)
\(b)\) Ta có :
\(\left|x-3\right|\ge0\)
\(\Rightarrow\)\(B=\left|x-3\right|+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-3\right|=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(B\) là \(5\) khi \(x=3\)
Chúc bạn học tốt ~
G = (x - 3)^2 + |x^2 - 9| + 25
có (x - 3)^2 > 0 và |x^2 - 9| > 0
=> G > 25
xét G = 25 khi :
(x - 3)^2 = 0 và |x^2 - 9| = 0
=> x - 3 = 0 và x^2 - 9 = 0
=> x = 3 và x^2 = 9
=> x = 3 và x = + 3
=> x = 3
vậy Min G = 25 khi x = 3
\(G=\left(x-3\right)^2+|x^2-9|+25\)
Ta có:\(\left(x-3\right)^2\ge0;|x^2-9|\ge0\)
\(\Rightarrow G\ge25\)
Nếu G=25 thì \(\hept{\begin{cases}\left(x-3\right)^2=0\\|x^2-9|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\x^2-9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\x=\pm3\end{cases}}\Rightarrow x=3}\)
Vậy GTNN của G=25 đạt được khi x=3