Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
b, Để B lớn nhất thì \(\left(x-\dfrac{2}{3}\right)^2+9\) nhỏ nhất
Ta có: \(\left(x-\dfrac{2}{3}\right)^2+9\ge9\)
\(\Leftrightarrow B=\dfrac{4}{\left(x-\dfrac{2}{3}\right)^2+9}\le\dfrac{4}{9}\)
Dấu " = " khi \(\left(x-\dfrac{2}{3}\right)^2=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(MAX_B=\dfrac{4}{9}\) khi \(x=\dfrac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a: \(B=\left(x+2\right)^2+\left(y-\dfrac{1}{5}\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=-2 và y=1/5
b: \(C=\left(x+3\right)^4+1\ge1\)
Dấu '=' xảy ra khi x=-3
c: \(D=x^2-4x+4+11=\left(x-2\right)^2+11\ge11\)
Dấu '=' xảy ra khi x=2
a: \(A\ge1\forall x\)
Dấu '=' xảy ra khi x=3/4