K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

B = \(-x^2+4x+5=-\left(x^2-4x-5\right)=-\left[\left(x^2-4x+4\right)-9\right]=-\left(x-2\right)^2+9\)

Có: \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2+9\le9\)

Vậy MaxB = 9 <=> x = 2

-----

C = \(x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)

Dấu ''='' xảy ra khi x = 2

Vậy MinC = 5 <=> x = 2

--------

D = \(9+30x^2+25x^2=9+55x^2\ge9\)

dấu ''='' xảy ra khi x = 0

vậy minC = 9 <=> x = 0

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

30 tháng 11 2017

\(1,A=x\left(x+1\right)+5\)

\(=x^2+x+5\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)

Ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dâu = xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy \(Min_A=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

\(2,B=-x^2-4x+9\)

\(=-\left(x^2+4x+4\right)+13\)

\(=-\left(x+2\right)^2+13\)

Ta có :\(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2+13\le13\)

Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy \(Max_B=13\Leftrightarrow x=-2\)

\(3,C=x^2-4x+7+y^2+2y\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+2\)

\(=\left(x-2\right)^2+\left(y+1\right)^2+2\)

Ta có :

\(\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+2\ge2\)

Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy \(Min_C=2\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

30 tháng 11 2017

a) \(x\left(x+1\right)+5\)

\(=x^2+x+5\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)

\(=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}\)

\(=\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{19}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)

Vậy GTNN của biểu thức trên bằng \(\dfrac{19}{4}\) khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)

b) \(-x^2-4x+9\)

\(=-x^2-4x-4+13\)

\(=-\left(x^2+4x+4\right)+13\)

\(=-\left(x^2+2.x.2+2^2\right)+13\)

\(=-\left(x+2\right)^2+13\)

Vậy GTLN của biểu thức trên bằng \(13\) khi \(x+2=0\Leftrightarrow x=-2\)

6 tháng 10 2018

a) \(A=25x^2-10x+9\)

\(A=\left(5x\right)^2-2\cdot5x\cdot1+1^2+9\)

\(A=\left(5x-1\right)^2+9\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

19 tháng 10 2021

\(1,x^2+4x-2=\left(x+2\right)^2-6\ge6\)

Dấu \("="\Leftrightarrow x=-2\)

\(2.x^2+7x+1=\left(x+\dfrac{7}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{7}{2}\)

\(3,25x^2+30x+11=\left(5x+3\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{5}\)