K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)

Dấu = xảy ra khi x=-1

19 tháng 3 2021

Tìm GTLN hoặc GTNN của biểu thức M=3.x2+8

Trả lời:

Ta thấy x2>=0

=> M>=8

lấy đạo hàm M =>M'= 6x=0 tại x=0 (đạt cực trị tại x=0)

=> Biểu thức M có GTNN tại x=0 (lúc đó M=8)

Giả sử với x là số nguyên, GTLN của biểu thức là \(\infty\)

Để có GTNN thì x phải là số 0. Nếu x là số dương thì kết quả dương, còn nếu x là số âm thì kết quả cũng dương.

Khi đó M = 3 * 0^2 + 8 = 8

5 tháng 11 2017

GTNN là gì z.tui ko  hiểu nên ko giải được!

GTNN là giá trị nhỏ nhất

2 tháng 3 2021

Trả lời:

1, A = | x - 3 | + 10 

Vì \(\left|x-3\right|\ge0\forall x\)

nên \(\left|x-3\right|+10\ge10\forall x\)

Dấu = xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của A = 10 khi x = 3

B = -7 + ( x + 1 )2 

Vì \(\left(x+1\right)^2\ge0\forall x\)

nên \(-7+\left(x+1\right)^2\ge-7\forall x\)

Dấu = xảy ra khi x + 1 = 0 <=> x = -1

Vậy GTNN của B = -7 khi x = -1

2, C = -3 - | x + 2 | 

Vì \(\left|x+2\right|\ge0\forall x\)

=> \(-\left|x+2\right|\le0\forall x\)

=> \(-3-\left|x+2\right|\le-3\forall x\)

Dấu = xảy ra khi x + 2 = 0 <=> x = -2

Vậy GTLN của C = -3 khi x = -2

D = 15 - ( x - 2 )2

VÌ \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2\le0\forall x\)

=> \(15-\left(x-2\right)^2\le15\forall x\)

Dấu = xảy ra khi x - 2 = 0 <=> x = 2

Vậy GTLN của D = 15 khi x = 2

20 tháng 4 2021

\(B\left(1-x\right)\left(3x+4\right)\)

\(\rightarrow B=\frac{1}{3}\left(3-3x\right)\left(3x+4\right)\)

\(\rightarrow B\text{⩽ }\frac{1}{3}\left(\frac{3-3x+3x+4}{2}\right)^2\)

\((BTD\)\(AM-GM)\)

\(\rightarrow B\text{⩽ }\frac{1}{3}.\frac{49}{4}\)

\(\rightarrow B\text{⩽ }\frac{49}{12}\)

Dấu '' = '' xảy ra \(\Leftrightarrow3-3x=3x+4\Leftrightarrow-\frac{1}{6}\)

Vậy \(max\)\(B=\frac{49}{12}\Leftrightarrow x=-\frac{1}{6}\)

\(B=\left(1-x\right).\left(3x+4\right)\)

Ta có :

\(B=3x+4-3x^2-4x\)

\(B=-3x^2-x+4\)

\(B=-3\left(x^2+\frac{1}{3}x-\frac{4}{3}\right)\)

\(B=-3\left(x^2+2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}-\frac{4}{3}\right)\)

\(B=-3\left[\left(x+\frac{1}{6}\right)^2-\frac{49}{36}\right]\)

Vì \(\left(x+\frac{1}{6}\right)^2\ge0\)

\(\Rightarrow\left(x+\frac{1}{36}\right)^2-\frac{49}{36}\ge-\frac{49}{36}\)

\(\Rightarrow B\le\frac{49}{12}\)

\(\Rightarrow\)GTLN của B là \(\frac{49}{12}\)Khi \(x=-\frac{1}{6}\)

11 tháng 5 2015

Vì (x+1)2008 \(\ge\) 0 với mọi x => - (x+1)2008 \(\le\) 0 => 20  - (x+1)2008 \(\le\) 20 + 0 = 20 với mọi x

=> A lớn nhất bằng 20 khi x+ 1= 0 <=> x = -1

b) Vì (x-1)2 \(\ge\) 0 với mọi x =>  (x-1) + 90  \(\ge\) 0 + 90 = 90 với mọi x 

=> B nhỏ nhất = 90 khi x -1 = 0 <=> x = 1 

11 tháng 5 2015

đấy nha, tự trả lời đê, ai bảo nói mk kia

6 tháng 1 2016

tương tự baì đẳng trên mình vừa làm đấy

|A| <= 0 với mọi A

thì -|A| <= 0 vứi mọi A

tương tự với bình phương một số

2 tháng 2 2017

Bạn giải cụ thể ra đc không?

20 tháng 8 2017

a, Ta có: \(\left|7-x\right|\ge0\Rightarrow-\left|7-x\right|\le0\Rightarrow A=-100-\left|7-x\right|\le-100\)

Dấu "=" xảy ra khi |7 - x| = 0 => x = 7

Vậy MaxA = -100 khi x = 7

b, Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left|2-y\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)

\(\Rightarrow B=-\left(x+1\right)^2-\left|2-y\right|+11\le11\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}-\left(x+1\right)^2=0\\\left|2-y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy MaxB = 11 khi x = -1 và y = 2

c, Ta có: \(\hept{\begin{cases}\left(x+5\right)^2\ge0\\\left(2y-6\right)^2\ge0\end{cases}}\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2\ge0\)

\(\Rightarrow C=\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}\)

Vậy MinC = 1 khi x = -5 và y = 3