K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11

Vì (2x-2)2luôn lớn hơn hoặc bằng 0

=>A>hoặc =0+11 hay a>hoặc =11

vậy GTNN của A là 11 khi x=1

18 tháng 12 2016

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)

suy ra Amin=-1

18 tháng 12 2016

\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

21 tháng 6 2017

\(A=x^2-8x+13=\left(x^2-8x+16\right)-3\ge-3\)Vậy \(Min_A=-3\) khi \(x+4=0\Leftrightarrow x=-4\)

\(B=2x^2+10x+5=2\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{5}{4}=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)Vậy \(Min_B=-\dfrac{5}{4}\) khi \(x+\dfrac{5}{2}=0\Rightarrow=\dfrac{-5}{2}\)

\(C=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\le4\)Vậy \(Max_C=4\) khi \(2-x=0\Rightarrow x=2\)

21 tháng 6 2017

Bài 1:

a, \(A=x^2-8x+13\)

\(A=x^2-4x-4x+16-3\)

\(A=\left(x-4\right)^2-3\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2-3\ge-3\)

Hay \(A\ge-3\) với mọi giá trị của \(x\in R\).

Để \(A=-3\) thì \(\left(x-4\right)^2-3=-3\Rightarrow x=4\)

Vậy......

Câu b tương tự

c, \(4x-x^2\)

\(C=-\left(x^2-4x\right)=-\left(x^2-2x-2x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-4\ge-4\)

\(\Rightarrow-\left[\left(x-2\right)^2-4\right]\le4\)

Hay \(A\le4\) với mọi giá trị của \(x\in R\).

Để \(A=4\) thì \(-\left[\left(x-2\right)^2-4\right]=4\Rightarrow x=2\)

Vậy......

Chúc bạn học tốt!!!

30 tháng 6 2017

c, C= 4x^2 -12x +25

= 4x^2 -12x + 9+16

= (2x -3)^2 +16

ta có (2x-3)^2 >,= 0 với mọi x

=> (2x-3)^2 +16 >,=16 với mọi x

dấu bằng xảy ra khi (2x-3) ^2 =0

=> 2x-3 = 0

=> 2x =3

=> x =1,5

vậy .............

30 tháng 6 2017

d, D = 2x^2 -8x -5

D= 2(x^2 -4x +4) -13

D= 2(x-2)^2 -13

ta có 2 (x-2)^2 >,= 0 với mọi x

=> 2(x-2)^2 -13 >,= -13 với mọi x

dấu = xảy ra khi 2(x-2)^2 =0

=> (x-2)^2=0

=>x-2 =0

=> x=2

vậy .............

30 tháng 6 2018

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTNN của \(A\) là \(2\) khi \(x=3\)

\(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)

\(\Leftrightarrow\)\(x-10=0\)

\(\Leftrightarrow\)\(x=10\)

Vậy GTNN của \(B\) là \(1\) khi \(x=10\)

Chúc bạn học tốt ~ 

30 tháng 6 2018

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\)

Mà  \(\left(x-3\right)^2\ge0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :  \(x-3=0\Leftrightarrow x=3\)

Vậy  \(A_{Min}=2\Leftrightarrow x=3\)

b) \(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\)

Mà  \(\left(x-10\right)^2\ge0\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :  \(x-10=0\Leftrightarrow x=10\)

Vậy  \(B_{Min}=1\Leftrightarrow x=10\)

c)  \(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\)

      \(\left(y-1\right)^2\ge0\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vây  \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

24 tháng 6 2018

Tìm giá trị nhỏ nhất và lớn nhất, mình sẽ làm hai bài mẫu, các bài còn lại bạn làm tương tự

Giải:

GTNN:

\(A=x^2-4x+1\)

\(\Leftrightarrow A=x^2-4x+4-3\)

\(\Leftrightarrow A=\left(x^2-4x+4\right)-3\)

\(\Leftrightarrow A=\left(x-2\right)^2-3\ge-3;\forall x\)

\(\Leftrightarrow A_{Min}=-3\)

\("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy ...

GTLN:

\(D=5-8x-x^2\)

\(\Leftrightarrow D=21-16-8x-x^2\)

\(\Leftrightarrow D=21-\left(16+8x+x^2\right)\)

\(\Leftrightarrow D=21-\left(4+x\right)^2\le21;\forall x\)

\(\Leftrightarrow D_{Max}=21\)

\("="\Leftrightarrow4+x=0\Leftrightarrow x=-4\)

Vậy ...

21 tháng 5 2020

amin là gì vậy

 

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!

30 tháng 8 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+2x-x-1\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)

\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)

\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)

\(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)

\(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\)

\(\left(2x-y\right)^2\ge0\) với mọi x và y

\(y^2\ge0\) với mọi y

\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)

\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(C=5x-3x^2+2\)

\(C=-\left(3x^2-5x-2\right)\)

\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)

\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)

\(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x

\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)

\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)

\(D=-8x^2+4xy-y^2+3\)

\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)

\(D=-\left(2x-y\right)^2-4x^2+3\)

\(-\left(2x-y\right)^2\le0\) với mọi x và y

\(-4x^2\le0\) với mọi x

\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y

\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(E=x^2-8x+38\)

\(E=x^2-2.x.4+16+22\)

\(E=\left(x-4\right)^2+22\)

\(\left(x-4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x

\(\Rightarrow Emin=22\Leftrightarrow x=4\)

\(F=6x-x^2+1\)

\(F=-\left(x^2-6x-1\right)\)

\(F=-\left(x^2-2.x.3+9-9-1\right)\)

\(F=-\left(x-3\right)^2+10\)

\(-\left(x-3\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-3\right)^2+10\le10\)

\(\Rightarrow Fmax=10\Leftrightarrow x=3\)

14 tháng 9 2018

a) 

\(A=5x-x^2\)

\(A=-x^2+5x\)

\(A=-\left(x^2-5x\right)\)

\(A=-\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right)\)

\(A=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)

\(A=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

\(A=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)

mà mũ chẵn luôn >= 0

\(\Rightarrow A\le\frac{25}{4}\)

Dấu '=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy,.........

14 tháng 9 2018

b) 

\(B=x-x^2\)

\(B=-x^2+x\)

\(B=-\left(x^2-x\right)\)

\(B=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(B=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

\(B=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)

mà ( x - 1/2 )2 luôn lớn hơn hoặc bằng 0 với mọi x

\(\Rightarrow B\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy,..........