Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
\(A=x^2-8x+13=\left(x^2-8x+16\right)-3\ge-3\)Vậy \(Min_A=-3\) khi \(x+4=0\Leftrightarrow x=-4\)
\(B=2x^2+10x+5=2\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{5}{4}=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)Vậy \(Min_B=-\dfrac{5}{4}\) khi \(x+\dfrac{5}{2}=0\Rightarrow=\dfrac{-5}{2}\)
\(C=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\le4\)Vậy \(Max_C=4\) khi \(2-x=0\Rightarrow x=2\)
Bài 1:
a, \(A=x^2-8x+13\)
\(A=x^2-4x-4x+16-3\)
\(A=\left(x-4\right)^2-3\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2-3\ge-3\)
Hay \(A\ge-3\) với mọi giá trị của \(x\in R\).
Để \(A=-3\) thì \(\left(x-4\right)^2-3=-3\Rightarrow x=4\)
Vậy......
Câu b tương tự
c, \(4x-x^2\)
\(C=-\left(x^2-4x\right)=-\left(x^2-2x-2x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-4\ge-4\)
\(\Rightarrow-\left[\left(x-2\right)^2-4\right]\le4\)
Hay \(A\le4\) với mọi giá trị của \(x\in R\).
Để \(A=4\) thì \(-\left[\left(x-2\right)^2-4\right]=4\Rightarrow x=2\)
Vậy......
Chúc bạn học tốt!!!
c, C= 4x^2 -12x +25
= 4x^2 -12x + 9+16
= (2x -3)^2 +16
ta có (2x-3)^2 >,= 0 với mọi x
=> (2x-3)^2 +16 >,=16 với mọi x
dấu bằng xảy ra khi (2x-3) ^2 =0
=> 2x-3 = 0
=> 2x =3
=> x =1,5
vậy .............
d, D = 2x^2 -8x -5
D= 2(x^2 -4x +4) -13
D= 2(x-2)^2 -13
ta có 2 (x-2)^2 >,= 0 với mọi x
=> 2(x-2)^2 -13 >,= -13 với mọi x
dấu = xảy ra khi 2(x-2)^2 =0
=> (x-2)^2=0
=>x-2 =0
=> x=2
vậy .............
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
Tìm giá trị nhỏ nhất và lớn nhất, mình sẽ làm hai bài mẫu, các bài còn lại bạn làm tương tự
Giải:
GTNN:
\(A=x^2-4x+1\)
\(\Leftrightarrow A=x^2-4x+4-3\)
\(\Leftrightarrow A=\left(x^2-4x+4\right)-3\)
\(\Leftrightarrow A=\left(x-2\right)^2-3\ge-3;\forall x\)
\(\Leftrightarrow A_{Min}=-3\)
\("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy ...
GTLN:
\(D=5-8x-x^2\)
\(\Leftrightarrow D=21-16-8x-x^2\)
\(\Leftrightarrow D=21-\left(16+8x+x^2\right)\)
\(\Leftrightarrow D=21-\left(4+x\right)^2\le21;\forall x\)
\(\Leftrightarrow D_{Max}=21\)
\("="\Leftrightarrow4+x=0\Leftrightarrow x=-4\)
Vậy ...
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+2x-x-1\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)
\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)
\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)
Vì \(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)
\(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\)
Vì \(\left(2x-y\right)^2\ge0\) với mọi x và y
\(y^2\ge0\) với mọi y
\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)
\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(C=5x-3x^2+2\)
\(C=-\left(3x^2-5x-2\right)\)
\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)
\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)
\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)
Vì \(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x
\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)
\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)
\(D=-8x^2+4xy-y^2+3\)
\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)
\(D=-\left(2x-y\right)^2-4x^2+3\)
Vì \(-\left(2x-y\right)^2\le0\) với mọi x và y
\(-4x^2\le0\) với mọi x
\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y
\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(E=x^2-8x+38\)
\(E=x^2-2.x.4+16+22\)
\(E=\left(x-4\right)^2+22\)
Vì \(\left(x-4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x
\(\Rightarrow Emin=22\Leftrightarrow x=4\)
\(F=6x-x^2+1\)
\(F=-\left(x^2-6x-1\right)\)
\(F=-\left(x^2-2.x.3+9-9-1\right)\)
\(F=-\left(x-3\right)^2+10\)
Vì \(-\left(x-3\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-3\right)^2+10\le10\)
\(\Rightarrow Fmax=10\Leftrightarrow x=3\)
a)
\(A=5x-x^2\)
\(A=-x^2+5x\)
\(A=-\left(x^2-5x\right)\)
\(A=-\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right)\)
\(A=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)
\(A=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
\(A=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)
mà mũ chẵn luôn >= 0
\(\Rightarrow A\le\frac{25}{4}\)
Dấu '=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy,.........
b)
\(B=x-x^2\)
\(B=-x^2+x\)
\(B=-\left(x^2-x\right)\)
\(B=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)
\(B=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
\(B=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)
mà ( x - 1/2 )2 luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow B\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy,..........
a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11
Vì (2x-2)2luôn lớn hơn hoặc bằng 0
=>A>hoặc =0+11 hay a>hoặc =11
vậy GTNN của A là 11 khi x=1