Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=25x^2-10x+9\)
\(A=\left(5x\right)^2-2\cdot5x\cdot1+1^2+9\)
\(A=\left(5x-1\right)^2+9\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)
1.
A =\(2x^2-8x+10=\left(x^2-2x+1\right)+\left(x^2-6x+9\right)\)
\(=\left(x-1\right)^2+\left(x-3\right)^2=\left(x-1\right)^2+\left(3-x\right)^2\)
Có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(3-x\right)^2\ge0\end{matrix}\right.\forall x\)
<=> \(\left|x-1\right|+\left|x-3\right|\)
Áp dụng bđt |a| + |b| \(\ge\) |a + b| có:
\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
đẳng thức xảy ra khi \(1\le x\le3\)
Vậy ................
1.
a)
\(A=2x^2-8x+10=2\left(x^2-4x+4\right)+2\ge=2\left(x-2\right)^2+2\ge2\)
Đẳng thức xảy ra \(\Leftrightarrow x=2\)
b)
\(B=3x^2-x+20=3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{239}{12}=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{12}\ge\dfrac{239}{12}\)
Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)
c) ĐK: \(x\ne-1\)
\(C=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4x^2+8x+4}\)
\(=\dfrac{3x^2+6x+3}{4x^2+8x+4}+\dfrac{x^2-2x+1}{4x^2+8x+4}\)
\(=\dfrac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}\ge\dfrac{3}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
bài 1: phân tích đa thức thành nhân tử:
a) \(\dfrac{1}{4}x^2-5xy+25y^2\)
\(=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.5y+\left(5y\right)^2\)
\(=\left(\dfrac{1}{2}x-5y\right)^2\)
b) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
c) \(125-x^6\)
\(=5^3-\left(x^2\right)^3\)
\(=\left(5-x^2\right)\left[5^2+5x^2+\left(x^2\right)^2\right]\)
\(=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)
Bài 3 .
a) A =x2 + y2 - 4x + 2y + 5
A =( x2 + 2y + 1 ) + ( y2 - 2.2x + 22)
A = ( x + 1)2 +( y - 2)2
Do : ( x + 1)2 lớn hơn hoặc bằng 0 với mọi x
Suy ra : ( y - 2)2
Vậy , Amin = 0 khi và chỉ khi : x + 1 = 0 -> x = -1
y - 2 =0 -> y = 2
b)B = -4x2 - 9y2 - 4x + 6y + 3
B = - [ (2x)2 + 2.2x + 1] - [ ( 3y)2 - 2.3y + 1] + 5
B = -( 2x + 1)2 - ( 3y - 1)2 + 5
Do : -( 2x + 1)2 nhỏ hơn hoặc bằng 0 với mọi x
Suy ra : -( 2x + 1)2 + 5 nhỏ hơn hoặc bằng 5 với mọi x
-( 3y - 1)2 nhỏ hơn hoặc bằng 0 với mọi x
Suy ra : - ( 3y - 1)2 + 5 nhỏ hơn hoặc bằng 5 với mọi x
Vậy , Bmax = 5 khi và chỉ khi 2x + 1 =0 -> x = \(-\dfrac{1}{2}\)
3y - 1 = 0 -> y = \(\dfrac{1}{3}\)
a 4x -x^2 +3
= -x^2 +4x+3
=-x^2+4x+4-1
=-(x+2)^2-1>=-1
"="xảy ra khi (x+2)^2=0
tương đương x+2=0
tương đương x=-2
vậy GTLN của 4x-x^2+3 là -2 khi x=-2