\(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Giúp mì...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 11 2018

Đặt \(\sqrt{x}=t\ge0\)

\(P=\dfrac{4t}{3t^2-3t+3}\Rightarrow3Pt^2-\left(3P+4\right)t+3P=0\left(1\right)\)

Ta cần tìm P để (1) có ít nhất một nghiệm không âm

\(\Delta=\left(3P+4\right)^2-36P^2=\left(4-3P\right)\left(4+9P\right)\ge0\)

\(\Rightarrow\dfrac{-4}{9}\le P\le\dfrac{4}{3}\) (2)

Để (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}\dfrac{3P+4}{3P}< 0\\\dfrac{3P}{3P}>0\end{matrix}\right.\) \(\Rightarrow\dfrac{-4}{3}< P< 0\)

\(\Rightarrow\) để (1) có ít nhất 1 nghiệm không âm thì \(P\ge0\) hoặc \(P\le\dfrac{-4}{3}\) (3)

Kết hợp (2) với (3) ta được: \(0\le P\le\dfrac{4}{3}\)

Vậy \(P_{min}=0\)\(P_{max}=\dfrac{4}{3}\)

27 tháng 11 2018

Vậy dấu "=" xảy ra khi nào? Hình như Max đúng rồi còn Min mình chưa chắc...

3 tháng 11 2016

\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\frac{1}{\sqrt{x}+2}\)

A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0

30 tháng 11 2019

\(x=\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)

<=> \(x^3=\frac{1}{4-\sqrt{15}}+3\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\right)\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}.\sqrt[3]{4-\sqrt{15}}\right)\)

                           \(+4-\sqrt{15}\)

<=> \(x^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+3x\)

<=> \(x^3-3x+2006=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+2006\)

<=> \(x^3-3x+2006=\frac{4+\sqrt{15}}{16-15}+4-\sqrt{15}+2006\)

<=> \(x^3-3x+2006=2014\)

4 tháng 10 2019

a/ ĐKXĐ : \(x\ge0;x\ne1\)

\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\frac{2}{x^2-2x+1}\)

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\frac{2}{\left(x-1\right)^2}\)

\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\frac{x-2\sqrt{x}+\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-1\right)}{2\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=-\sqrt{x}\left(x-1\right)\)

Vậy...

b/ Ta có :

\(P>0\)

\(\Leftrightarrow-\sqrt{x}\left(x-1\right)>0\)

\(\Leftrightarrow\sqrt{x}\left(x-1\right)< 0\)

\(\sqrt{x}\ge0\)

\(\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ

Vậy \(0< x< 1\) thì P > 0

c/ Ta có :

\(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) thỏa mãn \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

Thay vào P rồi bạn tự tính ra nhé :>

17 tháng 9 2017

Ta có : \(a^3=10+3\sqrt[3]{\left(5+\sqrt{52}\right)\left(5-\sqrt{52}\right)}\left(\sqrt[3]{5+\sqrt{52}}+\sqrt[3]{5-\sqrt{52}}\right)\)

\(=10+3\sqrt[3]{-27}.a=10-9a\)

\(\Rightarrow a^3+9a-10=0\Rightarrow\left(a-1\right)\left(a^2+a+10\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a^2+a+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=1\\\left(a+\dfrac{1}{2}\right)^2+\dfrac{39}{4}>0\end{matrix}\right.\)

\(\Rightarrow a=1\) \(\Rightarrow f\left(a\right)=1+1+1^2+.....+1^{2015}=2016\)

17 tháng 9 2017

cách thức tính a ? :) máy tính?