Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ x thuộc R
ta thấy x^2 +1 >=0
=> \(\frac{3-4x}{x^2+1}\)>=0
dấu bằng xảy ra khi và chỉa khi
3 -4x =0
=> 4x = 3
=> x = \(\frac{3}{4}\)
vậy MINA = 0 tại x = \(\frac{3}{4}\)
Băng Băng 2k6: P2 m làm là miền giá trị của lớp 9, lớp 8 chưa học Delta nên không dùng được nhé!
Đơn giản lắm!
Tìm min A:
\(A=\frac{4x+1}{4x^2+2}=\frac{\left(x+1\right)^2}{2x^2+1}-\frac{1}{2}\ge-\frac{1}{2}\)
Đẳng thức xảy ra khi \(x=-1\)
Tìm max A:
\(A=\frac{4x+1}{4x^2+2}=-\frac{\left(2x-1\right)^2}{2\left(2x^2+1\right)}+1\le1\)
Đẳng thức xảy ra khi \(x=\frac{1}{2}\)
Vậy....
----------------------------------------------------------------------------------------------------
Tìm min B:
\(B=\frac{4x+5}{x^2+2x+6}=\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}-\frac{4}{5}\ge-\frac{4}{5}\)
Đẳng thức xảy ra khi \(x=-\frac{7}{2}\)
Tìm max B:
\(B=\frac{4x+5}{x^2+2x+6}=-\frac{\left(x-1\right)^2}{x^2+2x+6}+1\le1\)
Đẳng thức xảy ra khi \(x=1\)
Vậy...
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
*GTNN:
A=\(\frac{x^2-4x+4-x^2-1}{x^2+1}\) =\(\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)
GTNN của A=-1 khi và chỉ khi x=2
*GTLN:
A=\(\frac{4x^2+4-4x^2-4x-1}{x^2+1}\) =4-\(\frac{\left(2x+1\right)}{x^2+1}\le4\)
GTLN của A=4 khi và chỉ khi x=\(\frac{-1}{2}\)
A = \(\frac{3-4x}{x^2+1}\) <=> A.(x2 + 1) = 3 - 4x <=> Ax2 + 4x + A - 3 = 0
Để phương thức trên tồn tại x thì 4 - A.(A-3) = -A2 + 3A +4 > 0
<=> A2 - 3A - 4 < 0
<=> (A+1). (A - 4) < 0
<=> -1 < A < 4
Vậy GTNN của A là -1 và GTLN của A là 4
\(E=\frac{3-4x}{2x^2+2}=\frac{4x^2+4-\left(4x^2+4x+1\right)}{2x^2+2}=2-\frac{\left(2x+1\right)^2}{2x^2+2}\le2\forall x\)
Dấu "=" xảy ra khi: \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
\(E=\frac{3-4x}{2x^2+2}=\frac{x^2-4x+4-\left(x^2+1\right)}{2x^2+2}=\frac{\left(x-2\right)^2}{2x^2+2}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x-2=0\Leftrightarrow x=2\)
Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2
\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)
Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)
tham khảo
\(A=\frac{4x+1}{4x^2+2}=\frac{4x^2+2}{4x^2+2}-\frac{4x^2-4x+1}{4x^2+2}=1-\frac{\left(2x-1\right)^2}{4x^2+2}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
\(A=\frac{4x+1}{4x^2+2}=\frac{-\left(2x^2+1\right)}{4x^2+2}+\frac{2x^2+4x+2}{4x^2+2}=\frac{-1}{2}+\frac{2\left(x+1\right)^2}{4x^2+2}\ge\frac{-1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-1\)