Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)
\(=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left[cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right]\)
\(=\frac{3}{2}-\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}cos2x\)
\(=\frac{3}{2}-cos2x\)
Đề bài ko đúng, biểu thức trên vẫn phụ thuộc vào biến x
Bạn có thể kiểm chứng ngay biểu thức ban đầu (chưa rút gọn) bằng 2 giá trị x khác nhau
Với \(x=\frac{\pi}{6}\) cho kết quả \(P=\frac{9}{4}\)
Với \(x=\frac{\pi}{2}\) cho kết quả \(P=\frac{3}{2}\)
Nếu biểu thức ko phụ thuộc x thì phải luôn cho kết quả giống nhau dù x bằng bao nhiêu
mấy bài này , e ko chắc lắm đâu , coi lại rồi xem có j sai k nhé ! Sai thì ns vs e để e còn sửa
a) \(pt\Leftrightarrow14x^2-6x-8=0\Leftrightarrow2\left(x-1\right)\left(7x+4\right)=0\)
b) \(-3x^4-10x^3+32x^2=0\Leftrightarrow x^2\left(2-x\right)\left(3x+16\right)=0\)
c) \(\Leftrightarrow\dfrac{\left(x-1\right)\left(x^5-5x^4-5\right)}{x^4-x+1}=0\)
a) Đặt \(t=\left|2x-\dfrac{1}{x}\right|\Leftrightarrow t^2=\left(2x-\dfrac{1}{x}\right)^2=4x^2-4+\dfrac{1}{x^2}\Leftrightarrow t^2+4=4x^2+\dfrac{1}{x^2}\) ĐK \(t\ge0\)
từ có ta có pt theo biến t : \(t^2+4+t-6=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|2x-\dfrac{1}{x}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{x}=1\\2x-\dfrac{1}{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
c: TH1: x>0
Pt sẽ là \(\dfrac{x^2-1}{x\left(x-2\right)}=2\)
=>2x^2-4x=x^2-1
=>x^2-4x+1=0
hay \(x=2\pm\sqrt{3}\)
TH2: x<0
Pt sẽ là \(\dfrac{x^2-1}{-x\left(x-2\right)}=2\)
=>-2x(x-2)=x^2-1
=>-2x^2+4x=x^2-1
=>-3x^2+4x+1=0
hay \(x=\dfrac{2-\sqrt{7}}{3}\)
b:
TH1: 2x^3-x>=0
\(4x^4+6x^2\left(2x^3-x\right)+1=0\)
=>4x^4+12x^5-6x^3+1=0
\(\Leftrightarrow x\simeq-0.95\left(loại\right)\)
TH2: 2x^3-x<0
Pt sẽ là \(4x^4+6x^2\left(x-2x^3\right)+1=0\)
=>4x^4+6x^3-12x^5+1=0
=>x=0,95(loại)