Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
\(=xy\left(2xy-\frac{4}{3}x+2\right)\)
b) 2xy2.(x + 5y) - 4xy(5y + x)
= (5y + x)(2xy2 - 4xy)
= 2xy(5y + x)(y - 2)
c) 25 - 4x2 - y2 + 4xy
= 25 - (4x2 - 4xy + y2)
= 52 - (2x + y)2
= (5 - 2x - y)(5 + 2x + y)
d) x2 + 4x - 2xy - 4y +y2
= (x2 - 2xy + y2) + (4x - 4y)
= (x - y)2 + 4(x - y)
= (x - y)(x - y + 4)
e) 12y3 - 3x2y + 12xy - 12y
= 3y(4y2 - x2 + 4x - 4)
= 3y[4y2 - (x - 2)2]
= 3y(2y - x + 2)(2y + x - 2)
f) 64x4 + y4
= (8x2)2 + 16x2y2 + y4 - 16x2y2
= (8x2 + y2)2 - (4xy)2
= (8x2 + y2 - 4xy)(8x2 + y2 + 4xy)
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
b) \(2xy^2\left(x+5y\right)-4xy\left(5y+x\right)\)
\(=\left(x+5y\right)\left(2xy^2-4xy\right)\)
\(=2\left(x+5y\right)\left(xy^2-2xy\right)\)
c) \(25-4x^2-y^2+4xy\)
\(=25-\left(4x^2+y^2-4xy\right)\)
\(=5^2-\left[\left(2x\right)^2-2.2x.y+y^2\right]\)
\(=5^2-\left(2x-y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(12y^3-3x^2y+12xy-12y\)
f) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
D ez nhất :v
\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)
Đẳng thức xảy ra khi x = 1 và y = -2
\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)
\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)
Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1
a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)
a) 4x2 - 5xy + y2 = 4x2 - 4xy - xy + y2 = 4x( x - y ) - y( x - y ) = ( x - y )( 4x - y )
b) x2 - 4xy + 3y2 = x2 - xy - 3xy + 3y2 = x( x - y ) - 3y( x - y ) = ( x - y )( x - 3y )
c) 9x2 + 6xy - 8y2 = 9x2 - 6xy + 12xy - 8y2 = 9x( x - 2/3y ) + 12y( x - 2/3y ) = ( x - 2/3y )( 9x + 12y )
d) 2x2 + 3xy - 5y2 = 2x2 - 2xy + 5xy - 5y2 = 2x( x - y ) + 5y( x - y ) = ( x - y )( 2x + 5y )
e) x2 - 35y2 - 2xy = x2 + 5xy - 7xy - 35y2 = x( x + 5y ) - 7y( x + 5y ) = ( x + 5y )( x - 7y )
f) 2x2 + 10xy + 8y2 = 2( x2 + 5xy + 4y2 ) = 2( x2 + xy + 4xy + 4y2 ) = 2[ x( x + y ) + 4y( x + y ) ] = 2( x + y )( x + 4y )
g) x2 - 10xy + 16y2 = x2 - 2xy - 8xy + 16y2 = x( x - 2y ) - 8y( x - 2y ) = ( x - 2y )( x - 8y )
h) 4x2 + 4xy - 15y2 = 4x2 - 6xy + 10xy - 15y2 = 4x( x - 3/2y ) + 10y( x - 2/3y ) = ( x - 2/3y )( 4x + 10y )
i) -7xy + 3x2 + 2y2 = 3x2 - xy - 6xy + 2y2 = 3x( x - 1/3y ) - 6y( x - 1/3y ) = ( x - 1/3y )( 3x - 6y )
j) 56y2 + 4x2 - 36xy = 4( x2 - 9xy + 14y2 ) = 4( x2 - 2xy - 7xy + 14y2 ) = 4[ x( x - 2y ) - 7y( x - 2y ) ] = 4( x - 2y )( x - 7y )