K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
5 tháng 8 2019

+ \(P=x-2x^2=-2\left(x^2-\frac{1}{2}x\right)=-2\left(x^2-2x\cdot\frac{1}{4}+\frac{1}{16}-\frac{1}{16}\right)\)

\(=-2\left(x-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\forall x\)

Dấu "=" \(\Leftrightarrow-2\left(x-\frac{1}{4}\right)^2=0\Leftrightarrow x=\frac{1}{4}\)

Vậy Max \(P=\frac{1}{8}\Leftrightarrow x=\frac{1}{4}\)

+ \(Q=-\left[\left(x^2-2xy+y^2\right)+\left(y^2+2y\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{5}{4}\right]\)

\(=-\left[\left(x-y\right)^2+\left(y+\frac{1}{2}\right)^2\right]+\frac{5}{4}\le\frac{5}{4}\forall x,y\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y+\frac{1}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=-\frac{1}{2}\)

Max \(Q=\frac{5}{4}\Leftrightarrow x=y=-\frac{1}{2}\)

13 tháng 7 2019

1.Tìm GTLN:

a)-2x^2+4x-18

Ấn vào máy tính : mode  5  1 

Rồi án hệ phương trình vào lặp 3 lần dấu =

kq = 1

b)-2x^2-12x+12

Ấn tương tự phần a

kq = -3

c)-2x^2+2xy-5y^2+4y+2x+1

Câu này bạn chuyển về hằng đẳng thức rồi xét nghiệm tìm GTLN nha

2.Tìm x,y:

a)x^2-2x+4y^2+4y+2

= x2 - 2x . 1+ 12 + ( 2y )2 + 2 . 2y . 1 + 12 

= ( x - 1 ) 2 + ( 2y + 1 ) 2

+) ( x - 1 ) 2 = 0                                                   +) ( 2y + 1 ) = 0

      x - 1      = 0                                                         2y + 1 = 0

      x           = 1                                                           y        = \(-\frac{1}{2}\)

b)4x^2-8x+y+2y

Câu này cũng tương tự như câu trên chuyển về hằng đẳng thức nha

20 tháng 9 2021

\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)

\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

20 tháng 9 2021

\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)

dấu = xảy ra khi và chỉ khi y=4,x=3

27 tháng 9 2021

\(-5x^2-2xy-2y^2+14x+10y-1\\ =-\left(x^2+2xy+y^2\right)-\left(4x^2-2\cdot2\cdot\dfrac{7}{2}x+\dfrac{49}{4}\right)-\left(y^2-10y+25\right)+\dfrac{55}{4}\\ =-\left(x+y\right)^2-\left(2x-\dfrac{7}{2}\right)^2-\left(y-5\right)^2+\dfrac{55}{4}\le\dfrac{55}{4}\\ Max\Leftrightarrow\left\{{}\begin{matrix}x=-y\\2x=\dfrac{7}{2}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=\dfrac{7}{4}\\y=5\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

a: Ta có: \(-x^2+3x\)

\(=-\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

13 tháng 7 2019

1a) Ta có: -2x2 + 4x - 18 = -2(x2 - 2x + 1) - 16 = -2(x - 1)2 - 16

Ta luôn có: (x - 1)2 \(\ge\)\(\forall\)x --> -2(x - 1)2 \(\le\)\(\forall\)x

=> -2(x - 1)2 - 16 \(\le\)-16 \(\forall\)x

Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1

Vậy Max của -2x2 + 4x - 18 = -16 tại x = 1

b) Ta có: -2x2 -12x + 12 = -2(x2 + 6x + 9) + 30 = -2(x + 3)2 + 30

Ta luôn có: -2(x + 3)2 \(\le\)\(\forall\)x

=> -2(x + 3)2 + 30 \(\le\)30 \(\forall\)x

Dấu "=" xảy ra khi: x + 3 = 0 <=> x = -3

Vậy Max của -2x2 - 12x + 12 = 30 tại x = -3

13 tháng 7 2019

3.

a)\(x^2+15x-25=x^2+15x+56,25-81,25\) 

  \(=\left(x+7,5\right)^2-81,25\ge-81,25\forall x\) 

Dấu "=" xảy ra<=>\(\left(x+7,5\right)^2=0\Leftrightarrow x=-7,5\) 

Vậy.....

b) \(3x^2-6x-21=3\left(x^2-2x-7\right)\) 

  \(=3\left[\left(x-1\right)^2-8\right]=3\left(x-1\right)^2-24\ge-24\forall x\) 

Dấu "=" xảy ra<=>\(3\left(x-1\right)^2=0\Leftrightarrow x=1\) 

Vậy.....

c)\(x^2-6x+y^2+2y+36=x^2-6x+9+y^2+2y+1+26\) 

 \(=\left(x-3\right)^2+\left(y+1\right)^2+26\ge26\forall x;y\) 

Dấu '=" xảy ra<=> \(\left(x-3\right)^2=0\Leftrightarrow x=3\) và   \(\left(y+1\right)^2=0\Leftrightarrow y=-1\) 

Vậy......

14 tháng 7 2016

a) (x-y)2-(x2-2xy)

=y2-2xy+x2-x2+2xy

=y2-(-2xy+2xy)+(x2-x2)

=y2

b)(x-y)2+x2+2xy-(x+y)2

=y2-2xy+x2+x2+2xy-y2-2xy-x2

=(y2-y2)-(2xy+2xy-2xy)+(x2+x2-x2)

=x2-2xy

5 tháng 10 2021

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

5 tháng 10 2021

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

27 tháng 7 2017

B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15

= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15 

( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3

25 tháng 7 2017

A= 2x^2+9y^2-6xy-6x-12y+2004

A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004

A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975

A= (x -3y +2)^2 + (x -5)^2 + 1975

( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3

D=-x^2+2xy-4y^2+2x+10y-8

D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5

D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5

D= - (x - y - 1)^2 - 3(y - 2)^2 +5 

=> Max D = 5 khi x= 3 và y=2

18 tháng 2 2018

ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow x^2+2xy+y^2+7x+7y=-y^2\le0\)

\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)\le0\)

\(\Leftrightarrow\left(x+y+7\right)\left(x+y\right)\le0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y+7\ge0\\x+y\le0\end{matrix}\right.\\\left[{}\begin{matrix}x+y+7\le0\\x+y\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y\ge-7\\x+y\le0\end{matrix}\right.\\\left[{}\begin{matrix}x+y\le-7\\x+y\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-7\le x+y\le1\) \(\Leftrightarrow-6\le x+y+1\le1\)

vậy \(GTNN\) của \(A\)\(-6\)\(GTLN\) của \(A\)\(1\)

5 tháng 8 2017

hình như là y2 nhe