\(\dfrac{2\sqrt{x}}{2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2022

\(\dfrac{2\sqrt{x}}{2x+1}\le\dfrac{2\sqrt{x}}{2\sqrt{2x.1}}=\dfrac{\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)

23 tháng 2 2019

GTNN và GTLN của cả A và B hay của A + B vậy bạn...

28 tháng 9 2017

Hỏi đáp Toán

28 tháng 9 2017

Hỏi đáp Toán

19 tháng 10 2022

a: \(x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu = xảy ra khi x=1/4

b: \(\sqrt{x^2+2x+10}=\sqrt{\left(x+1\right)^2+9}>=3\)

=>B<=1/3

Dấu = xảy ra khi x=-1

25 tháng 6 2017

\(F=1-\sqrt{x^2-2x+2}=1-\sqrt{\left(x-1\right)^2+1}\)(   Điều kiện: \(x\in R\))

Ta có \(\left(x-1\right)^2\ge0, \forall x \Leftrightarrow\left(x-1\right)^2+1\ge1, \forall x \Leftrightarrow\sqrt{\left(x-1\right)^2+1} \ge1, \forall x\)

\(\Leftrightarrow-\sqrt{\left(x-1\right)^2+1}\le-1, \forall x \Leftrightarrow1-\sqrt{\left(x-1\right)^2+1}\le0, \forall x\Leftrightarrow F\le0, \forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)( thỏa điều kiện )

Vậy GTLN của F là 0 tại x = 1

25 tháng 6 2017

dệ không

15 tháng 11 2018

1, ĐKXĐ: x\(\ge0\);x\(\ne1\)

Rút gọn P với \(x\ge0;x\ne1\)ta có

P=\(\dfrac{-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\sqrt{x}+0,5}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)}{x-\sqrt{x}+1}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-x\sqrt{x}+x-\sqrt{x}+0,5x-0,5\sqrt{x}+0,5+x\sqrt{x}-x-0,5x+0,5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

=\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

15 tháng 11 2018

2, Thay x=7-4\(\sqrt{3}\)thỏa mãn đk vào P ta có:

P\(=\dfrac{7-4\sqrt{3}-\sqrt{7-4\sqrt{3}}+1}{\sqrt{7-4\sqrt{3}}}\)

=\(\dfrac{7-4\sqrt{3}-\sqrt{\left(\sqrt{3}-2\right)^2}+1}{\sqrt{\left(\sqrt{3}-2\right)^2}}\)

=\(\dfrac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}\)

\(=\dfrac{6-3\sqrt{3}}{2-\sqrt{3}}=12+6\sqrt{3}-6\sqrt{3}-9\)=3

24 tháng 10 2017

\(M=\dfrac{x}{2}+\sqrt{1-x-2x^2}\)

\(=\dfrac{x}{2}+\sqrt{\left(1-2x\right)\left(x+1\right)}\)

\(\le\dfrac{x}{2}+\dfrac{1-2x+x+1}{2}=1\)

Dấu "=" xảy ra khi \(1-2x=x+1\)

\(\Leftrightarrow x=0\)

Vậy . . . (bài này hổng chắc nhe -.-)

1 tháng 11 2018

+) điều kiện xác định : \(x\ge0\)

\(A_{max}\Leftrightarrow P=x+\sqrt{x}+1\) nhỏ nhất

ta có : \(P=x+\sqrt{x}+1\ge1\) \(\Rightarrow P_{min}=1\) khi \(x=0\)

\(\Rightarrow A_{max}=\dfrac{2}{1}=2\) khi \(x=0\)

+) điều kiện xác định : \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

ta có : \(B-2x=\sqrt{x^2-4}\)

\(\Rightarrow B-2x\ge0\) \(\Leftrightarrow B\ge2x\) \(\Leftrightarrow\) \(B\ge4\)

\(\Rightarrow B_{min}=4\) khi \(x=2\)

31 tháng 10 2018

Bài này làm như thế nào ạ? Mysterious Person Nguyễn Thanh Hằng tran nguyen bao quan thanks!

30 tháng 10 2018

Bỏ dòng đầu đi là oke

30 tháng 10 2018

Arakawa Whiter giúp vs