K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

Đặt \(\frac{x}{4}=\frac{y}{7}\) = k => x = 4k; y = 7k ( k khác 0)

Thay vào C ta được: \(C=\frac{\left(1+\sqrt{3}\right)\left(4k\right)^2.7k-\left(2-\sqrt{5}\right).4k.\left(7k\right)^2}{\left(4k\right)^3+\left(7k\right)^3}=\frac{\left(112.\left(1+\sqrt{3}\right)-196.\left(2-\sqrt{5}\right)\right).k^3}{407k^3}\)

\(C=\frac{112+112\sqrt{3}-392+196\sqrt{5}}{407}=\frac{112\sqrt{3} +196\sqrt{5}-280}{407}\)

23 tháng 2 2020

\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)

\(\Leftrightarrow A=\frac{4xy}{\left(y^2-x^2\right)\left(y^2+x^2\right)}:\left(\frac{1}{\left(y+x\right)^2}-\frac{x^3+y^3}{\left(x^2-y^2\right)\left(x^2+y^2\right)}\right)\)

Ai giải giúp mấy bài toán vsBài 1:A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)Bài 2 rút gọn biểu thứcA=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)Bài 3 cho biểu...
Đọc tiếp

Ai giải giúp mấy bài toán vs

Bài 1:

A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)

B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)

Bài 2 rút gọn biểu thức

A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0

B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)

Bài 3 cho biểu thức

P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)

a)Rút gọn P

b)tìm x để P=\(\text{√}x+\frac{5}{2}\)

bài 4 rút gọn biểu thức 

A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)

B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)

Bài 5

A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)

a)rút gọn A

b)tìm gtri x để A= -1/4

AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN

0
10 tháng 8 2017

Ta có :

 Đặt A=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{x+y}{xy}\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)^3}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\frac{1}{xy}\)

=\(\frac{xy.\left(\sqrt{x}-\sqrt{y}\right)}{xy\sqrt{xy}}\)

=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{4-3}}\)

=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

=> \(A^2=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)

           =\(2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}\)

           =\(4-2\sqrt{4-3}\)

           =\(4-2\)

           =\(2\)

=>\(A=\sqrt{2}\)

7 tháng 7 2021

\(a,B=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{1-xy}\right):\left(\frac{1-xy+x+y+2xy}{1-xy}\right)\)

\(B=\frac{\sqrt{x}+\sqrt{y}+x\sqrt{y}+y\sqrt{x}+\sqrt{x}-\sqrt{y}-x\sqrt{y}+y\sqrt{x}}{1-xy}.\frac{1-xy}{1+xy+x+y}\)

\(B=\frac{2\sqrt{x}+2y\sqrt{x}}{x\left(y+1\right)+\left(y+1\right)}\)

\(B=\frac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}\)

\(B=\frac{2\sqrt{x}}{x+1}\)

\(b,B=\frac{2\sqrt{\frac{2}{2+\sqrt{3}}}}{\frac{2}{2+\sqrt{3}}+1}\)

\(\frac{2\sqrt{\frac{4}{4+2\sqrt{3}}}}{\frac{4}{4+2\sqrt{3}}+1}\)

\(B=\frac{2\sqrt{\frac{4}{\left(\sqrt{3}+1\right)^2}}}{\frac{4}{\left(\sqrt{3}+1\right)^2}+1}\)

\(B=\frac{2.2}{\sqrt{3}+1}:\frac{4+2\sqrt{3}}{\sqrt{3}+1}\)

\(B=\frac{4}{\left(\sqrt{3}+1\right)^2}\)

\(B=\left(\frac{2}{\sqrt{3}+1}\right)^2\)

\(c,B=\frac{2\sqrt{x}}{x+1}\)

\(B=\frac{2}{\sqrt{x}+\frac{1}{\sqrt{x}}}\)

ta có :

\(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)

dấu "=" xảy ra khi \(x=1\)

\(< =>MAX:B=\frac{2}{2}=1\)

7 tháng 7 2021

Đk: x \(\ge\)0; y \(\ge\)0; xy \(\ne\)1

Ta có: B = \(\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)

B = \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\frac{1-xy+x+y+2xy}{1-xy}\)

B = \(\frac{x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}\cdot\frac{1-xy}{x+y+xy+1}\)

B = \(\frac{2\sqrt{x}+2y\sqrt{x}}{\left(y+1\right)\left(x+1\right)}=\frac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{2\sqrt{x}}{x+1}\)

b) Ta có: \(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4-2\sqrt{3}}{4-3}=4-2\sqrt{3}\)

=> \(x=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)=> \(\sqrt{x}=\sqrt{3}-1\)

Do đó, B = \(\frac{2.\left(\sqrt{3}-1\right)}{4-2\sqrt{3}+1}=\frac{2\sqrt{3}-2}{5-2\sqrt{3}}=\frac{\left(2\sqrt{3}-2\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}=\frac{10\sqrt{3}+12-10-4\sqrt{3}}{25-12}\)

B = \(\frac{6\sqrt{3}+2}{13}\)

c) Ta có: \(\frac{1}{B}=\frac{x+1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\ge2\cdot\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{2\sqrt{x}}}=2\cdot\sqrt{\frac{1}{4}}=1\)(đk: x \(\ne\)0)

=> \(B\le\frac{1}{1}=1\)Dấu "==" xảy ra<=> \(\frac{\sqrt{x}}{2}=\frac{1}{2\sqrt{x}}\) => \(2\sqrt{x}=2\) => \(x=1\)

Đề sai rồi bạn