K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2023

\(y=x+\sqrt[]{2\left(1-x\right)}\left(x\le1\right)\)

\(\Rightarrow y=-\left(1-x\right)+\sqrt[]{2\left(1-x\right)}+1\)

\(\Rightarrow y=-\left(1-x\right)+\sqrt[]{2\left(1-x\right)}+1\)

\(\Rightarrow y=-\left[\left(1-x\right)-\sqrt[]{2\left(1-x\right)}+\left(\dfrac{\sqrt[]{2}}{2}\right)^2\right]+1+\left(\dfrac{\sqrt[]{2}}{2}\right)^2\)

\(\Rightarrow y=-\left[\sqrt[]{1-x}-\dfrac{\sqrt[]{2}}{2}\right]^2+1+\dfrac{1}{2}\)

\(\Rightarrow y=-\left[\sqrt[]{1-x}-\dfrac{\sqrt[]{2}}{2}\right]^2+\dfrac{3}{2}\)

mà \(-\left[\sqrt[]{1-x}-\dfrac{\sqrt[]{2}}{2}\right]^2\le0,\forall x\le1\)

\(\Rightarrow y=-\left[\sqrt[]{1-x}-\dfrac{\sqrt[]{2}}{2}\right]^2+\dfrac{3}{2}\le\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi

\(\sqrt[]{1-x}-\dfrac{\sqrt[]{2}}{2}=0\)

\(\Leftrightarrow\sqrt[]{1-x}=\dfrac{\sqrt[]{2}}{2}\)

\(\Leftrightarrow1-x=\dfrac{1}{2}\)

\(\Leftrightarrow x=1-\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{1}{2}\) (thỏa \(x\le1\))

\(\Rightarrow GTLN\left(y\right)=\dfrac{3}{2}\left(tạix=\dfrac{1}{2}\right)\)

NV
22 tháng 7 2021

Biểu thức này không tồn tại cả max lẫn min

13 tháng 6 2017

\(P=\frac{x}{x+1}+\frac{y}{y+1}=2-\frac{1}{x+1}-\frac{1}{y+1}\)

\(\le2-\frac{4}{2+x+y}=2-\frac{4}{2+1}=\frac{2}{3}\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

16 tháng 11 2017

Bạn kia làm đúng rồi^_^

3 tháng 12 2021

\(x^2+y^2+z^2+4xyz=2\left(xy+yz+zx\right)\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\ge0\\ \Leftrightarrow1-x\ge0\Leftrightarrow0< x\le1\\ \Leftrightarrow\left(x-y-z\right)^2=\left(1-x\right)4yz\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)+\left(y+z\right)^2\le\left(1-x\right)\left(y+z\right)^2\\ \Leftrightarrow x^2-2x\left(y+z\right)\le\left(y+z\right)^2\left(1-x-1\right)=-x\left(y+z\right)^2\\ \Leftrightarrow x-2\left(y+z\right)\le-\left(y+z\right)^2\\ \Leftrightarrow x\le\left(y+z\right)\left[2-\left(y+z\right)\right]\)

Đặt \(2-\left(y+z\right)=t\)

\(P=x\left(1-y\right)\left(1-z\right)\le x\left(\dfrac{1-y+1-z}{2}\right)^2=\dfrac{x\left[2-\left(y+z\right)\right]^2}{4}\\ \Leftrightarrow4P\le x\left[2-\left(y+z\right)\right]^2\le\left(y+z\right)\left[2-\left(y+z\right)\right]^3\\ \Leftrightarrow4P\le t^3\left(2-t\right)=\dfrac{27}{16}-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\)

Mà \(-\dfrac{\left(4t^2+4t+3\right)\left(2t-3\right)^2}{16}\le0\Leftrightarrow4P\le\dfrac{27}{16}\Leftrightarrow P\le\dfrac{27}{64}\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{4};y=z=\dfrac{1}{4}\)

22 tháng 5 2016

b1: x+2y=1 => x=1-2y

P=4xy=4y(1-2y)=4y-8y2

Ta có: y2>=0(với mọi x)

=>8y2>=0(với mọi x)

=>-8y2<=0(với mọi x)

=>4y-8y2<=4y(với mọi x) hay P<=4y(với mọi x)

Do đó, GTLN của P là 4y khi:y=0

Vậy GTLN của P là 0

b3: Ta có: x^4>=0(với mọi x)

=>x^4+4>=4(với mọi x)

=>x^2/(x^4+4)<=x^2/4(với mọi x) hay A<=x^2/4(với mọi x)

Do đó, GTLN của A là x^2/4 khi x=0

Vậy GTLN của A là 0 tại x=0

b4:\(M=x-2.\sqrt{x-5}\)

Ta có: \(\sqrt{x-5}\)>=0(với mọi x)

=>2.\(\sqrt{x-5}\)>=0(với mọi x)

=>-2.\(\sqrt{x-5}\)<=0(với mọi x)

=>x-2.\(\sqrt{x-5}\)<=x(với mọi x) hay M<=x(với mọi x)

Do đó, GTLN của M là x tại \(\sqrt{x-5}\)=0

                                                 x-5=0

                                                x=0+5=5

Vậy GTLN của M là 5 tại x=5

 

22 tháng 5 2016

Bài 1:thay x= 1-2y vào biểu thức P=4xy ta có:

P= 4(1-2y)y= -8\(y^2\)+4y=-8(\(y^2\)-\(\frac{y}{2}\))= -8[(\(y^2\)-2.y.\(\frac{1}{4}\)+\(\left(\frac{1}{4}\right)^2\))-\(\left(\frac{1}{4}\right)^2\)]

=-8[\(\left(y-\frac{1}{4}\right)^2\)-\(\frac{1}{16}\)]=-8.\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)

Ta có -8\(\left(y-\frac{1}{4}\right)^2\)\(\le\)

=> P=-8\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)\(\le\)\(\frac{1}{2}\)

Vậy P đạt giá trị lớn nhất là \(\frac{1}{2}\) dấu = xảy ra khi y-\(\frac{1}{4}\)=0=> y=\(\frac{1}{4}\)

 

5 tháng 1 2021

\(P=\left|x\right|+\left|y\right|+\left|z\right|\)

Không mất tính tổng quát giả sử \(x\le y\le z\).

Khi đó \(x\le0;z\ge0\).

+) Nếu \(y\geq 0\) thì \(P=z-x+y=z-x-x-z=-2x\le2\).

+) Nếu \(y< 0\) thì \(P=z-x-y=z-x+z+x=2z\le2\).

Tóm lại \(P\le2\). Đẳng thức xảy ra khi, chẳng hạn x = -1; y = 0; z = 1.

Vậy Max P = 2 khi x = -1; y = 0; z = 1.

 

 

14 tháng 9 2018

\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)

\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)

dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)

vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)