Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left(x^2+x+5\right)\left(5-x^2-x\right)=25-\left(x^2+x\right)^2\le25\)
Dấu = xảy ra khi \(x^2+x=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
=> \(-Q=\left(x^2+x+5\right)\left(x^2+x-5\right)\)
=> \(-Q=\left(x^2+x\right)^2-25\)
Có: \(\left(x^2+x\right)^2\ge0\forall x\)
=> \(-Q\ge-25\forall x\)
=> \(Q\le25\)
DẤU "=" XẢY RA <=> \(\left(x^2+x\right)^2=0\)
<=> \(x^2+x=0\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
VẬY Q MAX = 25 <=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
GTNN LÀ \(\frac{2017}{2018}\)
KHI VÀ CHỈ KHI \(x=-\frac{1}{2018}\)
Ta có : \(\frac{x^2+2x+2018}{x^2}=\frac{2018x^2+4036x+2018^2}{2018x^2}\)
\(=\frac{2017x^2+x^2+4036x+2018^2}{2018x^2}=\frac{2017x^2}{2018x^2}+\frac{x^2+4036x+2018^2}{2018x^2}\)
\(=\frac{2017}{2018}+\frac{\left(x+2018\right)^2}{2018x^2}\)
Vì \(\frac{\left(x+2018\right)^2}{2018x^2}\ge0\forall x\in R\)
Nên : \(\frac{2017}{2018}+\frac{\left(x+2018\right)^2}{2018x^2}\ge\frac{2017}{2018}\)
Vậy GTNN của pt là \(\frac{2017}{2018}\) Khi \(x=-2018\)
\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)
Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).