Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt |3x-5|= y ,ĐK : y >/ 0
F=y2-6y+10 đến đây đơn giản
ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)
Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :
\(y^2+2y+4^x-2^{x+1}+2=0\)
\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)
\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)
\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)
CHÚC BẠN HỌC TỐT...........
a)\(9x^2+30x+25+9x^2-30x+25-\left(9x^2-2^2\right)\)
=\(9x^2+54\)=\(9\left(x^2+6\right)\)
b)\(2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
=\(8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
=\(x^3-16x^2+25x\)
c)\(\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)
=\(\left(x+y-z-\left(x+y\right)\right)^2\)=\(\left(-z\right)^2\)
câu F
chia khoảng cho nhàn: dẽ kiểm soát.
xét khi x<5/3
\(F=\left[\left(3x-5\right)^2+6\left(3x-5\right)+9\right]+1\)
\(F=\left[\left(3x-5\right)+3\right]^2+1\ge1\) đẳng thức khi \(3x-5+3=0\Rightarrow x=\dfrac{2}{3}< \dfrac{5}{3}\left(tmdk\right)\)
xét khi x>=5/3 Tương tự
\(F=\left[\left(3x-5\right)-3\right]+1\ge1\)
đẳng thức khia (3x-5)-3=0=> x=8/3 thủa mãn điều kiện
Kết luận: GTNN (F)=1 khi x=2/3 hoặc 8/3
câu I:
\(I=\dfrac{10x^2+41x+40}{x}\)
\(1-I=1-\dfrac{10x^2+41x+40}{x}=\dfrac{-\left(10x^2+40x+40\right)}{x}=\dfrac{-10\left(x+2\right)^2}{x}=A\)
Xem lại đề: khi x> không có GTLN;{sửa x<0}
\(\left\{{}\begin{matrix}x< 0\\A\ge0\end{matrix}\right.\) đẳng thức khi x=-2 \(\Rightarrow GTLN\left(I\right)\le1\)
a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)
b: A>0
=>x+1>0
=>x>-1
c: x^2+3x+2=0
=>(x+1)(x+2)=0
=>x=-2(loại) hoặc x=-1(loại)
Do đó: Khi x^2+3x+2=0 thì A ko có giá trị
Câu 1: \(3x+2\left(5-x\right)=0\)
\(\Rightarrow3x+10-2x=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\).
Câu 2: \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)
\(\Rightarrow2x\left(5-3x\right)-2x\left(5-3x\right)-3\left(x-7\right)=0\)
\(\Rightarrow\left(2x-2x\right)\left(5-3x\right)-3\left(x-7\right)=3\)
\(\Rightarrow-3\left(x-7\right)=3\)
\(\Rightarrow x-7=-1\)
\(\Rightarrow x=6.\)
Câu 3:
Áp dụng hằng đẳng thức mở rộng có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=a^3+b^3+c^3-3abc.\)
Câu 4: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
\(=\left(3x^2-2y^2\right)\left[3x^2-\left(3x^2+2y^2\right)\right]\)
\(=\left(3x^2-2y^2\right)\left(-2y^2\right)\)
\(=-6x^2y^2+4y^3.\)
Câu 5:
Ta có: \(R=\left(2x-3\right)\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\)
\(=\left(8x-12+12x^2-18x\right)-\left(24x-12x^2-12+6x\right)\)
\(=12x^2-10x-12-24x+12x^2+12-6x\)
\(=24x^2-40x.\)