K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

Áp dụng Bunhia cho bộ số (1;1;1) vfa (a;b;c) ta có 3(a2+b2+c2) >= (a+b+c)2

=> 3(2a2+b2) >=(2a+b2); 3(2b2+c2) >= (2b+c)2; 3(2c2+a2) >= (2c+a)2

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Ta có \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x+y+z}\)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+b}\le\frac{1}{9}\left[\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(I\right)\)

Ta có \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)

\(=3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\left(II\right)\)

Áp dụng Bunhia cho bộ số (1;1;1) và \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)\(\Rightarrow\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

=> \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left(III\right)\)

Từ (I)(II)(III) => \(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\cdot2015\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{3\cdot2015}\left(IV\right)\)

Từ (I)(IV) => \(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}\cdot\sqrt{3\cdot2015}=\sqrt{\frac{2015}{3}}\)

Vậy GTNN của P=\(\sqrt{\frac{2015}{3}}\)khi a=b=c và \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)

=> \(a=b=c=\sqrt{\frac{3}{2015}}\)

6 tháng 5 2020

Identitya,b,c đã dương???

22 tháng 4 2020

jh hutn jnoh lhgvhx

22 tháng 4 2020

Ta có : 2(a2  + b2 ) - ( a + b) -a2 -2ab + b2 =( a-b)\(\ge0\)

=> 2(a2 + b2 ) \(\ge\left(a+b\right)^2\)

tương tự : 2(b2 +c2 ) \(\ge\)( b + c)2 

                   2 (c2 + a2\(\ge\)( c + a)2 

=> P \(\le\frac{c}{a+b+1}+\frac{a}{b+c+1}+\frac{b}{c+a+1}\)

\(\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}\)( do  a ,b, c \(\le1\))

\(\frac{a+b+c}{a+b+c}=1\)

Vậy Max P = 1 <=> a = b = c =1

NV
11 tháng 3 2019

Trước hết ta chứng minh bài toán quen thuộc:

Cho \(abc=1\) thì \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)

\(VT=\frac{1}{ab+b+1}+\frac{1}{bc+c+abc}+\frac{b}{abc+ab+b}=\frac{1}{ab+b+1}+\frac{1}{c\left(b+1+ab\right)}+\frac{b}{1+ab+b}\)

\(=\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}=\frac{1+ab+b}{ab+b+1}=1\)

\(P=\sum\frac{1}{a^2+2b^2+3}=\sum\frac{1}{a^2+b^2+b^2+1+2}\le\sum\frac{1}{2ab+2b+2}=\frac{1}{2}\sum\frac{1}{ab+b+1}=\frac{1}{2}\)

\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(a=b=c=1\)

NV
11 tháng 3 2019

\(P=\sum\frac{1}{a^2+1+2\left(b^2+1\right)}\le\sum\frac{1}{2a+4b}=\frac{1}{2}\sum\frac{1}{a+b+b}\le\frac{1}{18}\sum\left(\frac{1}{a}+\frac{2}{b}\right)\)

\(\Rightarrow P\le\frac{1}{18}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}.3\sqrt[3]{\frac{1}{abc}}=\frac{1}{2}\)

\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(a=b=c=1\)

6 tháng 10 2019

\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}=a\sqrt{\frac{1}{a+b}.\frac{1}{c+a}}\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}\)

Tương tự 2 cái còn lại cộng lại ta đc \(VT\le\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

6 tháng 10 2019

Cach khac

Dat \(P=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)

Ta co:

\(a+b+c=abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(\Rightarrow xy+yz+zx=1\)

\(\Rightarrow P=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

Ta lai co:

\(\sqrt{\frac{yz}{1+x^2}}=\sqrt{\frac{yz}{xy+yz+zx+x^2}}=\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)

Tuong tu:

\(\sqrt{\frac{zx}{1+y^2}}\le\frac{1}{2}\left(\frac{z}{y+z}+\frac{x}{x+y}\right)\)

\(\sqrt{\frac{xy}{1+z^2}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

\(\Rightarrow a=b=c=\sqrt{3}\) 

Vay \(P_{min}=\frac{3}{2}\)khi \(a=b=c=\sqrt{3}\)

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

15 tháng 4 2020

chuyển mỗi biểu thức trong cân về cùng bậc 2 ta có:

\(a+\frac{\left(b-c\right)^2}{4}=a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{4}=a^2+a\left(b+c\right)+\frac{\left(b+c\right)^2-4ab}{4}\)

\(=\left(a+\frac{b+c}{2}\right)^2-bc\le\left(a+\frac{b+c}{2}\right)^2\)

\(\Rightarrow\sqrt{a+\frac{\left(b-c\right)^2}{2}}\le a+\frac{b+c}{2}\)

tương tự ta có: \(\hept{\begin{cases}\sqrt{b+\frac{\left(c-a\right)^2}{4}}\le b+\frac{c+a}{2}\\\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le c+\frac{a+b}{2}\end{cases}}\)

cộng theo vế của bđt trên ta được

\(P=\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\left(a+b+c\right)=2\)

Vậy GTLN của P=2 đạt được khi a=b=0;c=1 và các hoán vị

20 tháng 5 2019

Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)

Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)

\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)

Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)

=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)

Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)