![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow A\ge0\)
\(\Rightarrow A_{min}=0\) khi \(x=0\)
Với \(x\ne0\Rightarrow A=\frac{1}{\sqrt{x}+\frac{1}{\sqrt{x}}-1}\le\frac{1}{2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-1}=\frac{1}{2-1}=1\)
\(\Rightarrow A_{max}=1\) khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
![](https://rs.olm.vn/images/avt/0.png?1311)
Mấy cái này chỉ đơn giản là sử dụng các phép biến đổi đơn giản của biểu thức chứa căn bậc hai thôi nên bạn chú ý xem lại các bài trong SGK là làm được rồi! Chúc bạn học tốt nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức \(\sqrt{a}-\sqrt{b}\le\sqrt{a-b}\) ( với \(a\ge b\ge0\))
Ta có : \(\sqrt{x+3}-\sqrt{x-5}\le\sqrt{\left(x+3\right)-\left(x-5\right)}\)\(=\sqrt{8}=2\sqrt{2}\)
Dấu bằng xảy ra khi x=5
Vậy giá trị lớn nhất của A là \(2\sqrt{2}\)khi x=5
![](https://rs.olm.vn/images/avt/0.png?1311)
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)