\(\frac{3}{2x^2-4x+6}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

a) Ta có: 3|x - 14| \(\ge\)\(\forall\)x

=> 3|x - 14| + 4 \(\ge\)\(\forall\)x

=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)

Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14

Vậy MaxA = 3/2 <=> x = 14

8 tháng 11 2020

b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6  + 2 + 2x = -4 khi x \(\le\)-3

6 tháng 11 2016

a) |2x-2|=|2x+3|

TH1: 2x-2=2x+3

=> 2x-2=2x-2+5 ( vô lý )

=> Không tồn tại x

TH2: 2x-2=-2x-3

=> 2x+2x+3=2

=> 4x=-1

=> x=-1/4

Vậy: x=-1/4

b) \(A=\frac{1}{\sqrt{x-2}+3}\)

Để A đạt giá trị lớn nhất thì \(\sqrt{x-2}+3\) phải đạt giá trị nhỏ nhất

Có: \(\sqrt{x-2}\ge0\Rightarrow\sqrt{x-2}+3\ge3\)

Dấu = xảy ra khi x=2

Vậy: \(Max_A=\frac{1}{3}\) tại x=2

c) Có: \(\frac{2x+1}{x-2}< 2\Rightarrow\frac{2x+1}{x-2}-2< 0\)

\(\Rightarrow\frac{2x+1}{x-2}-\frac{2\left(x-2\right)}{x-2}< 0\)

\(\Rightarrow\frac{2x+1-2x+4}{x-2}< 0\)

\(\Rightarrow\frac{5}{x-2}< 0\)

\(\Rightarrow x< 2\)

5 tháng 11 2016

a)

|2x-2| = |2x+3|

<=> \(\left[\begin{array}{nghiempt}2x-2=2x+3\\2x-2=-2x-3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}0x=5\left(vl\right)\\4x=-1\end{array}\right.\)

<=> x = \(-\frac{1}{4}\)

28 tháng 9 2018

\(A=\left|4x-3\right|+\left|5y+7,5\right|+10\)

Mà \(\left|4x-3\right|\ge0\)với mọi x

\(\left|5y+7,5\right|\ge0\)với mọi y

\(\Rightarrow A\)có GTNN là 10

Để A có GTNN thì :

\(4x-3=0\)                           \(5y+7,5=0\)

\(4x=3\)                                                  \(5y=-7,5\)

\(x=\frac{3}{4}\)                                                     \(y=-1,5\)

28 tháng 9 2018

\(B=\frac{5,8}{\left|2,5-x\right|+5,8}\)

Mà \(\left|2,5-x\right|\ge0\)

\(\Rightarrow\)GTNN \(\left|2,5-x\right|+5,8=5,8\)

Để B có GTLN \(\Rightarrow2,5-x=0\)

\(\Rightarrow x=2,5\)

2 tháng 7 2018

ABCD dễ (tự làm)

E = ... <= 0 + 0 = 0

20 tháng 1 2017

Ta có:

(2x + \(\frac{1}{3}\))4 \(\ge\) 0 \(\forall\) x \(\in\) Z

=> (2x + \(\frac{1}{3}\))4 - 1 \(\ge\) -1 \(\forall\) x \(\in\) Z

=> A \(\ge\) -1 \(\forall\) x \(\in\) Z

Dấu "=" xảy ra khi (2x + \(\frac{1}{3}\))4 = 0

=> 2x + \(\frac{1}{3}\) = 0

=> 2x = 0 - \(\frac{1}{3}\)

=> 2x = \(\frac{-1}{3}\)

=> x = \(\frac{-1}{6}\)

Vậy GTNN của A = -1 khi x = \(\frac{-1}{6}\).

b) Lại có:

- (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 \(\le\) 0 \(\forall\) x \(\in\) Z

=> - (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 + 3 \(\le\) 3 \(\forall\) x \(\in\) Z

=> B \(\le\) 3 \(\forall\) x \(\in\) Z

Dấu "=" xảy ra khi:

(\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 = 0

=> \(\frac{4}{9}\)x - \(\frac{2}{15}\) = 0

=> \(\frac{4}{9}\)x = \(\frac{2}{15}\)

=> x = \(\frac{2}{15}\) : \(\frac{4}{9}\)

=> x = \(\frac{3}{10}\)

Vậy GTLN của B = 3 khi x = \(\frac{3}{10}\)

20 tháng 1 2017

a)Ta thấy: \(\left(2x+\frac{1}{3}\right)^4\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

\(\Rightarrow A\ge-1\)

Dấu "=" xảy ra khi \(\left(2x+\frac{1}{3}\right)^4=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy \(Min_A=-1\) khi \(x=-\frac{1}{6}\)

b)Ta thấy:\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)

\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)

\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)

\(\Rightarrow B\le3\)

Dấu "=" xảy ra khi \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Rightarrow x=\frac{3}{10}\)

Vậy \(Max_B=3\) khi \(x=\frac{3}{10}\)